

Selection of Mycelial Fungi Producers of Stable forms of Cellulases, Xylanases and Laccase

Kvesitadze G., Kutateladze L., Sadunishvili T., Khvedelidze R., Urushadze T., Zakariashvili N., Tsiklauri N., Jobava M.

Durmishide Institute of Biochemistry and Biotechnology, Agricultural University of Georgia

*corresponding author: Giorgi Kvesitadze

e-mail: kvesitadze@hotmail.com

Abstract. Project is focused on obtaining stable, industrially robust enzymes: cellulases, xylanases and laccases for lignocellulosics effective degradation and further fermentation by yeasts to ethanol. Selection of producers of stable cellulases, xylanases and laccase among the diverse mesophilic and thermophilic mycelial fungi strains collection of DIBB, AUG has been conducted. Screening of microscopic fungi strains of the culture collection according to their ability to produce stable and active extracellular enzymes have been carried. Around 400 strains of genera Aspegillus, Chaetomium, Cladosporium, Fusarium, Helmintosporium, Mucor, Penicillium, Rhizopus, Trichoderma, Trichothecium Myrothecium, Penicillium, StachybotrysandSporothrichum were applied in studies. 48 microscopic fungi producer strains have been selected: 19 mesophilic and 29 extremophilic; 15 strains were distinguished by high activities of cellulase/xylanase, 8 strains - by xylanaseand 15 strains by only cellulase production. Screening allowed to select 21 strains of the basidialfungi laccase producers. With the purpose to increase the biosynthesis of the strainsenzymes physiological parameters of cultivation of the mycelial fungi producers have been carried out.

Keywords: mycelial fungi, basidial fungi, cellulases, xylanases, laccase, submerged cultivation

1. Introduction

Although various microorganisms have been evaluated for their ability to deconstruct lignocellulosic biomass, only few have demonstrated production levels compatible for industrial applications (Lynd et al., 2002; Demain et al., 2005;). The ascomycetes, represented by Trichoderma ressei, secrete cellulolytic and xylanolytic enzymes that act in synergy to hydrolyze polysaccharide polymers to glucose, xylose and arabinose, which can be fermented to biofuels. Apart from Trichoderma, the other mesophilic strains producing cellulases are Allesheria terrestris, Chaetomium thermophile, Fusarium oxysporium, Piptoporus betulinus, Penicillium echinulatum, P. purpurogenum, Aspergillus niger, A. wentii, A. versicolor, A. fumigatus etc. (Kvesitadze et al., 1999; Martins et al., 2008). In the majority of the cases the cellulases produced by strains of genus Aspergillus usually have high β-glucosidase activity and average

endoglucanases levels (with some exceptions), whereas strains representing Trichoderma have high endo enzyme and low β -glucosidase, and hence has limited efficiency in cellulose hydrolysis. The most cellulases from fungimesophiles expose optimum activity at slightly acidic pH (5.0-6.0) and at temperatures between 40 and 55°C. Cellulases used in biotechnology are derived from wellcharacterized non-extremophilic microorganisms and there is a very little information regarding cellulases from extremophiles. An important drawback of these commonly used industrial enzymes is the lack of activity at even slightly elevated temperature and the tendency of these enzymes to denature at elevated temperatures or other critical conditions. Stable cellulases could be obtained either by isolating extremophilic microorganisms where such unique properties of extremophilic cellulases already exist or by protein engineering (Viikari et al., 2007). Thus, thermophillic fungi and bacteria such as Allesheria terrestris, Chaetomium thermophile, Sporotrichum thermophile, Scytalidium thermophillum, Clostridium straminisolvens, Thermonospora curvata, Pyrococcus furiosus, Acidothermus cellulolyticus, and Saccharophagus *degradans* producing cellulase complex may be valuable sources of heat stable cellulases (Kvesitadze et al., 1999; Kato et al., 2004). Systematic studies of these fungi identify some promising candidates for industrial application.

The aim of the project is to obtainstable enzymes from DIBB unique extremophilic mycelial fungi collection for the creation of biotechnology of production of fuelbioethanol from agricultural and industrial lignocellulosic wastes.

2. Materials and Methods

For the selection of cellulases and xylanases producers, submerged cultivation of microscopic fungi has been carried out in 250-ml Erlenmeyer flasks with 50 ml nutrient medium on temperature controlled rotary incubation shaker (180-200 rpm), at 30-45°C.Composition of liquid medium for production of extracellular cellulases, in %: microcrystalline cellulose -1.0; NaNO₃ -0.3; KH₂PO₄ -0.2; MgSO₄·7H₂O -0.05; corn steep extract -1.5ml (pH 4.5-5.0).

Composition of liquid medium for production of extracellular xylanases, in %: Soy bean flour -3.0; Na₂HPO₄ -1.5; (NH₄)₂SO₄ -0.2; KCl -0.05; MgSO₄ -0.015 (pH-4.5).

The strains 10-day old conidial suspensions were used as inocula. Cultivation was carried out during 90-96 hours in case of cellulases and during 70-76 hours, in case of xylanases.

For optimization of enzymessynthesis, cultivation at different pH, temperature and aeration have been conducted. Studied enzymes activities were measured in culture filtrates.

Composition of liquid medium for production of laccases (g per liter): $KH_2PO_4 - 0.8$; $K_2HPO_4-0.3$; $MgSO_4-0.5$; NH_4NO_3-2 ; $CuSO_4-0.25$; yeast extract - 3.0, pH 5.8.

Each 250ml erlenmeyer flask contained 50 ml nutrient

medium and 5g tangerine peels as a carbon source. In order to reveal laccase producers cultivation was conducted during 6 and 12 days.

Results and discussion

373 strains of DIBB culture collection, representatives

of different genera of microscopic fungi: Aspegillus, Chaetomium, Cladosporium, Fusarium, Helmintosporium, Mucor, Penicillium, Rhizopus, Trichoderma, Trichothecium, Sporothrichum. Chephalosporium, Chephalosporium and Stachybotrys were screened on cellulose degradation enzyme activities. According to literary data and our experience these strains are known to be active producers of cellulases and xylanases.

As a result of screening, 48 Strains including 19 mesophiles and 29 extremophiles were revealed as enzyme producers; among them 15 strains were distinguished by high activities of cellulase/xylanase, 8 strains – by xylanase and 15 strains by only cellulase production (Table 1).

No	Culture	Cellulase activity,	Xylanase activity,	Characterization
110		(*FP)	U/ml	
		U/ml		
1	Aspergillus niger K 6-11	-	11.0	Moderate halophile
2	Aspergillus niger N2-2	-	3.2	Alkalitolerant
3	Aspergillus niger N2-5	0.83	6.0	Alkalitolerant
4	Aspergillus sp. Av 10	0.80	8.0	Alkalitolerant Thermotolerant
				Moderate halophile
5	Aspergillus sp. Sh 86	0.56	4.0	Alkalitolerant Thermotolerant
				Moderate halophile
6	Fusarium sp.Av.42	0.44	-	Mesophile
7	Fusarium sp.Av.61	0.40	-	Mesophile
8	Fusarium sp. Sh-33	0.50		Mesophile
9	Mucor sp. Sh 81	0.50	-	Thermotolerant
10	Penicillium sp. K 1-7	0.90	-	Moderate halophile
11	Penicillium sp. Sh.60	0.90	-	Mesophile
12	Penicillium sp Tn 1-2	-	4.0	Mesophile
13	Penicillium sp.Tn 2-3	0.50	2.0	Mesophile
14	Penicillium sp. Av 1	0 34		Alkalitolerant
15	Sporothrichum pulverulentum S2-2	0.56	-	Thermophile
16	Trichoderma viride N 5-2	0.86	5.2	Alkalitolerant
17	Trichoderma viride N2-3	0.90	trace	Alkaliphile
18	Trichoderma lignorum Sh 7-9	1.20	4.0	Mesophile
19	Aspergillus niger A 7-5	-	20.0	Thermotolerant
20	Aspergillus sp. L 4-0	0.56	3.2	Thermotolerant
21	Aspergillussp. V 2-1	0.80	12.0	Mesophile

22	A	0.00	0.0	Magaghila
22	Aspergillussp. J1-3	0.60	9.0	Mesophile
23	Aspergillusniger S 87	0.64	6.0	Alkalitolerant
24	Aspergillus nigerAj 38	trace	25.0	Thermotolerant
25	Helmintosporium sp. I 1-8	0.72	trace	Mesophile
26	Penicillium canescence D85	1.05	32.0	Acidotolerant
27	Sporotrichum pulverulentum T 5-0	0.84	12.0	Thermophile
28	Trichoderma viride X33	0.94	trace	Alkalitolerant
29	Trichoderma viride D 13	0.90	trace	Mesophile
30	Aspergillus nigerV2-4	0.64	15.0	Alkalitolerant
31	Aspergillusniger H 6-1	-	25.0	Mesophile
32	Aspergillus terreus V2-8	0.70	3.2	Thermotolerant
				Alkalitolerant
33	Aspergillus flavus G 5-1	0.38	22.0	Alkalitolerant
34	Chephalosporium sp. O 4-1	-	11.5	Mesophile
35	Chaetomiumsp.Y 3-1	0.84	9.0	Thermotolerant
36	Penicillium sp. Y 1-2	0.80	7.5	Mesophile
37	Fusariumsp. Z 7-1	0.58	-	Psychrotolerant
38	RhizopusspV 3-7	0.44	trace	Mesophile
39	Rhizopus spV 4-6	0.56	12.0	Alkalitolerant
40	Aspergillus terreus S k 2	0.64	15.0	Thermotolerant
41	Chaetomium sp. Sy 11	0.84	5.0	Thermophile
42	Chaetomium sp. Sk 20	0.70	3.2	Thermotolerant
43	Myrothecium sp. Sy 9	0.92	trace	Mesophile
44	Myrothecium sp. My 21	0.84	trace	Mesophile
45	Mucor sp. Ar 6	-	11.0	Thermotolerant
46	Penicillium sp. Ar 12	0.58	18.0	Mesophile
47	Penicillium sp. Sy 41	0.44	15.0	Mesophile
48	Stachybotrys sp. Hh 8	0.50	9.0	Alkalitolerant

*FP-filter paper

Basidial fungi collection strains were screened on their ability to synthetize laccase. 61 strains, representatives of *Eumycota* of different genera were applied in the study. These are: *Cerrena, Fomes, Ganoderma, Lentinus, Pleurotus, Panus, Piptoporus, Trametes* and *Pseudotrametes*.

As a result of screening 21 strains of the basidial fungi were revealed as laccase producers (Table 2).

For the optimization of biosynthesis of cellulose degrading enzymes - cellulases and xylanases submerge cultivation of microscopic fungi was conducted in nutrient media containing various carbon sources: hay, malt sprouts, wheat bran, tea and wine production wastes, magazine paper, filter paper, microcrystalline cellulose and carboxymethyl cellulose at concentration 1%. Disaccharides and monosaccharides, in particular lactose, arabinose, mannitol, sucrose, rhamnose, sorbitol, xylose, galoctose, glycerol and glucose at 0.8% concentration according to carbon, were also applied as carbon sources.

The highest cellulase activity was observed while growing of studied fungi strains in microcrystalline cellulose containing medium. High xylanase activity was observed when xylan and soybean flour (SF) were included in the cultivation medium (Table 3).

Table 2. Laccase activities of basidial fungi strains

#	Strains	Laccase, U/l	
No		6 days	12 days
1	GanodermalucidumGM -04	960	1686
2	GanodermalucidumIG-74	-	1120
3	Lentinus edodes GK-97	406	156
4	Panus tigrinus GK-39	182	3584
5	Pleurotusostreotus GV-12	290	2436
6	Pleurotusostreotus GK-10	89	300
7	PleurotusOstreotus GK-52	130	246
8	Fomes fomentarius GK-33	0	4 256
9	PiptoporusbetulinusIK-25	562	55
10	Trametesmaxima GK-15	b	4 200
11	PseudotrametesgibbosaIK-76	651	12 600
12	GanodermaapplanatumIN-59	3 605	11 984
13	Pleurotusostreotus GD-41	123	424
14	Pleurotusostreotus IN-22	20	127
15	PleurotusdrynusIN- 11	20 160	39 760
16	TrameteshirsutusGN 08	950	9 548
17	Ganodermaapplanatum IN-18	8 984	13 984
18	Ganodermaadspersum IN-58	5 135	9 296
19	GanodermaSp GV -01	57 200	98 880
20	PiptoporusbetulinusIK-26	180	652
21	Trametesmaxima GK-02	32 400	24 00

In another experiments nutrient media with different nitrogen and phosporus sources: NaH₂PO₄; (NH₄)₂HPO₄; KH₂PO₄; K₂HPO₄ were used for fungi cultivation.

As a result, optimum liquid nutrient media of fungi cultivation for the best enzyme production have been established. Below are the composition of these media, which were applied in further studies.

Medium for the production of cellulases, in %: microcrystalline cellulose -0.1; NaNO₃ -0,; KH₂PO₄ -0.2; MgSO₄ x7H₂O -0.05; maize extract -1.5.

Medium for the production of xylanase, in %: soybean flour 3.0; $NaNO_3 - 0.24$; $(NH_4)_2SO_4 - 0.2$; KCl - 0.05; $MgSO_4 - 0.015$.

Results show that optimum temperature of growth for mesophilic strains varies between $27-32^{\circ}$ C, for thermotolerants - between $35-40^{\circ}$ C, and for thermophiles between $40-45^{\circ}$ C.

As for pH, optimum value for fungi submerged cultivation for mesophilic (by pH) strains varies between 5.0-6.5 pH, for alkalitolerant strains between pH 6.5-8.5 and for acidotolerants, between pH 2.5-5.5.

Table 3. Cellulase and xylanase activities of microscopic fungi strains grown on optimum carbon sources substrates

	Cellula	Cellulase FPA,		Xylanase,	
Strains	U	U /ml		U/ ml	
		Substrate	s		
	MCC (1 %)	MCC(2 %)	Xylan	SF	
Aspergillus niger A 7-5	-	-	20.0	18.5	

Aspergillus nigerAj 38	-	-	30.0	25.0
Penicillium canescence D85	1.05	0.88	24.0	32.0
Sporotrichum pulverulentum T 5-0	0.84	0.75	9.0	7.5
Trichoderma viride X33	0.94	1.0	-	-
Aspergillus sp. Av 10	0.80	0.96	7.5	8.0

FPA - filter paper activity; MCC - micro crystalline cellulose, SF - soybean flour

Table 4. Strains of microscopic fungi, active producers of Cellulase and xylanase

			-	
	Culture	Cellulase activity,	Xylanase activity,	Characterization
#		(*FP)	U/ml	
		U/ml		
1	Aspergillus niger A 7-5	-	20.0	Thermotolerant
2	Aspergillus niger Aj 38	trace	25.0	Thermotolerant
3	Aspergillussp. Av 10	0.80	8.0	Alkalitolerant
				Thermotolerant Moderate halophile
4	Penicillium canescence D85	1.05	32.0	Acidotolerant
5	Sporotrichum pulverulentum T5-0	0.84	12.0	Thermophile
6	Trichoderma viride X33	0.94	trace	Alkalitolerant
7	Aspergillusniger H 6-1	-	25.0	Mesophile
8	Aspergillus terreus V2-8	0.70	3.2	ThermotolerantAlkalitolerant
9	Chaetomiumsp.Y 3-1	0.84	9.0	Thermotolerant
10	Penicillium sp. Y 1-2	0.80	7.5	Mesophile
11	Fusariumsp. Z 7-1	0.58	-	Psychrotolerant

For the optimization of nutrient medium for laccase producer basidial fungi strains, various carbon sources at 1.5% concentration have been applied in initial synthetic medium during the submerged fermentation. The highest laccase activity among the enzyme producer GK 52, were obtained in medium with glycerol; glycerol was shown as the best carbon source also for *Trametes maxima* GK-15, *Pseudotrametes gibbosa* IK-76, *Ganoderma applanatum* IN-59 and *Pleurotus drynus* IN- 11. Comparatively high laccase activity was detected in glucose containing medium. Some carbon containing substrates appeared ineffective for laccase biosynthesis; For strains: *Ganoderma lucidum* GM 04, *Pleurotus ostreatus* GK 52 - it was avicel; for strains *Trametes maxima* GK-15, *Pseudotrametes gibbosa*IK-76 - xylan; as for strains –

Ganoderma applanatum IN-59 and *Pleurotus drynus* IN-11-xylan and Na-gluconate.

Conclusions

Both microscopic and basidial fungi strains expressed different biosynthetic abilities of enzymes, depending on carbon, nitrogen and phosphorus sources, as well as on conditions of cultivation, such as aeration, temperature and pH. By optimization of nutrient media and cultivation conditions best cellulase and xylanase producer microscopic fungi strains, as well as best laccase producer basidial fungi strains have been selected. Acknowledgement: The Study was supported by the ISTC project G-2117, funded by Korea.

References

- Demain at al. (2005), Microbiology and Molecular Biology Reviews, **6**9, 124-154.
- Kato, S. (2004). Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. International Journal of Systematic and Evolutionary Microbiology. 54, 2043–2047
- Kvesitadze, E., Adeishvili, E., Gomarteli, M., Kvachadze, L. and Kvesitadze, G. (1999) Cellulase and xylanase activity of fungi in a collection isolated from the southern Caucasus, International Biodeterioration and Biodegradation, 43, 189-196.
- Lynd R.R; Germgross T.U., Wyman C.E. (1999): Biocommodity engineering. BiotechnolProg 1999, 15:777-793).
- Martins, L.F., Kolling, D., Camassola, M., Dillon, A.J.P. and Ramos, L.P. (2008) Comparison between Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol.**99**, 1417–1424,
- Viikari L., Alapuranen M., Puranen T., Vehmaanperä J., Siika-Aho M. (2007). Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 108, 121–145.