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Abstract The purpose of this study is to investigate 

appropriate tools for river water quality forecasting as 

variations in water quality are difficult to predict due to the 

complicated nature within the range of various water 

quality factors. In this study, state space and neural 

network models are employed to mathematically analyze 

the intricate nonlinearity of processes that affect factors 

related to water quality. A monthly forecasting model is 

proposed that can predict water quality parameters, 

including dissolved oxygen (DO), biochemical oxygen 

demand (BOD), and suspended solid (SS) at the Miho river 

station in the Geum river basin (Korea). River water 

quality is predicted through the learning and the 

verification processes after applying the neural network 

theory to the proposed water quality forecasting model. 

Practical applications for predicting water quality 

prediction are examined by comparing the proposed model 

to the state space model (SSM). As a result, the artificial 

neural network (ANN) is estimated to have the ability to 

predict water quality more accurately than the state space 

model for each water quality item. 
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1. Introduction 

In recent years, researchers have been interested in 

improving water quality forecasting techniques. The 

surface water quality in a region largely depends on nature 

and on the extent of the industrial, agricultural, and other 

anthropogenic activities in or near the catchments. River 

systems are most adversely affected as a result of their 

dynamic nature and easy accessibility for waste disposal 

through drains and tributaries by direct or indirect means. 

Since, rivers and streams are among the most important 

sources of water used for irrigation, industry, and other 

purpose; they serve as lifelines for populations residing 

near the basins. Models for forecasting and examining 

river water quality are widely categorized into two types, 

which include a physical model and a system model. The 

physical model can be employed based on the use of 

empirical relationships between natural phenomena related 

to river water quality and mathematical models. The 

representation of a physical model can be achieved with 

the Enhanced Stream Water Quality Model (QUAL2E) and 

the Water Quality Analysis Simulation Program (WASP5). 

The system model has many advantages that can be 

employed. These advantages include the simplicity of 

composing the input and output data without having to 

rigorously understand the physical, chemical, and 

biological reactions in the water system. It also can be used 

for both short-term and long-term forecasting. Due to these 

advantages, the system model has been validated for 

applications in various fields. There are several 

representative system models, including the 

Autoregressive Integrated Moving Average (ARIMA) 

model, the State Space model (SSM), and the Artificial 

Neural Network model (ANN) (Faruk, 2009). The artificial 

intelligence algorithm generates numerical analysis by 

imitating the human thinking process. This algorithm is 

applicable not only for an interpretation of a simple 

relationship within data, but also for a non-linear analysis 

of its correlation. One of the representative system models 

is the artificial neural network (ANN) model (Yeon et al., 

2009 and Zang, 2009). The ANN model is extensively 

used nowadays due to the simplicity of its application, its 

descriptive ability for non-linear characterizations, and its 

robust ability for prediction. Maier and Dandy (1996) 

applied the neural network model to predict the water 

quality of the Murray River in South Australia. Nouh 

(1996) applied the neural network model to estimate the 

optimal parameters of the SWMM model to model water 

quality of urban sewage. Kenichi et al. (1997) compared 

the back propagation (BP) algorithm to the field 

measurements for forecasting eutrophication in lakes. 

Palani et al. (2008) demonstrated the application of neural 

network theory to a model with values of selected seawater 

quality variables, having the dynamic and complex 

processes hidden in the monitored data itself. In this study, 

water quality forecasting is conducted to suggest water 

quality control and countermeasures river for abnormalities 

for the future. The objectives of the present study are to: 

(1) develop an ANN and a state space model that predict 

monthly water quality data, (2) assess the performance of 

each modeling approach using observed data versus 

predicted data, and (3) evaluate the predictive performance 
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of ANN relative to the state space model by analyzing 

accuracy measures. 

2. Theoretical Background 

2.1. State Space Model 

The state space model (SSM) is one of the tools that can be 

used in the field involving time series for water quality 

forecasting. The model was introduced by Kalman(1960) 

and is also widely known as the Kalman filter model. In 

order to predict the future state, the current state is defined 

using the smallest possible subset of current and past 

information that can be used to create a prediction for the 

future state. The SSM can be expressed by formulating the 

process equation (1) and the measurement equation (2). 
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 is the transition matrix taking the state   
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from time k  to time 1k . 
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y  is the observable variable 

at time k  and 
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H  is the measurement matrix. The two 

vectors  
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w  and 
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v  are the process and the measurement 

noise, respectively, where 
k

Q  and 
k

R  are the covariance 

matrices of the normal distributions. 

2.2. Artificial Neural Network Model 

The neural network model is usually comprised of single 

or multiple layers, thereby being referred to as a single-

layer neural network or multi-layer neural network, 

respectively, to differentiate between models with different 

numbers of layers. In particular, the three layer neural 

network structure is the most extensively used, comprised 

of an input layer, output layer, and a hidden layer. The 

neural network model needs an algorithm that can obtain 

the value of its own connection weight by learning and 

repetition in order to produce reliable results that can 

expect an output for each corresponding input. In this 

study, the methods of moment and the adaptive learning 

rate were utilized as a form of a back propagation (BP) 

algorithm to improve the rate and the unstable learning 

outcome. The moment method can improve the converging 

rate, and it is useful to accelerate the learning speed. This 

method is extensively used because of its simplicity and 

efficiency. Moment coefficients are employed to avoid the 

vibration in errors generated by the learning process and to 

maximize the learning rate. The current adjusting volume 

of the connecting intensity can be computed by 

considering the variation of the connecting weight, which 

can be written expressed as follows:  
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where, t  is the number of iteration,    is the learning rate, 

y
  is the error of output layer, 

h
  is the error of the 

hidden layer,   and   are  the moment coefficients of 

weights W  and V , and H  and X  are vectors of the 

hidden layer and the input layer, respectively. The learning 

rate   can be adjusted and is controlled with the moment 

method of moments. This reate can be enhanced by 

equation (5) 
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where, 
1

r , 
2

r , 
3

r  are parameters corresponding to the 

adjustment of the learning rate, and )1( tE , )(tE  are 

current and previous step errors. 

 

3. Application and Results 

3.1. Study Area 

In this study, Mihocheon station, which is part of the 

Guem river station and is located in the central part of the 

Korea Peninsula, is considered to be a tripped basin. The 

area of river basin is 1,850 km
2
, and the river length is 87.3 

km. Water quality data from the stripped basin is required 

to evaluate the proposed models. The data in the selected 

location is used to estimate the parameters needed, to 

verify and forecast the state space model, and to learn and 

forecast using the neural network model. The water quality 

data set used in this study from Mihocheon station is 

provided by the Ministry of Environment of Korea from 

their water quality measurement database. This data had 

been produced by measuring the representative water 

quality taken monthly from January 1998 to December 

2008. The data set, taken from 1998 to 2007, is used to 

estimate the parameters necessary to learn the state space 

model and neural network model. The data taken in 2008 

are used for the forecasting of the model.  

3.2. State Space Model 

Water quality indicators [including water temperature, 

dissolved oxygen (DO), biochemical oxygen demand 

(BOD), suspended solid (SS), total nitrogen (TN), total 

phosphorus (TP), and chemical oxygen demand(COD)] are 

used as input variables in the model to forecast water 

quality at Mihocheon station using the state space model. 

In this study, the estimation of DO, BOD, and SS 

concentrations are conducted at each selected location by 

using the SAS/ETS program. The canonical correlation 

analysis is used to select the time difference of the initial 

VAR(p) model and state space vectors, and water quality 

forecasting is performed after determining the state space 

model equation and the vector autoregressive moving 

average (VARMA) model equation. A simulation of the 

water quality concentration of each item is conducted at 

Mihocheon station though the proposed state space model 

and we subsequently evaluated the finalized state space 

model equation and the VARMA model equation. The 

result of the simulation is shown in Table 1 and Figure 1. 
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Table 1. Statistical analysis of state space model at Mihocheon. 

Index Model Average SD Skewness RMSE 

DO State space 9.276 2.380 0.882 1.871 

BOD State space 4.454 2.886 0.796 1.402 

SS State space 16.203 12.011 1.240 3.400  

 

 

Table 2. Statistical analysis of state space model at Mihocheon. 

Index Input layer 

node(n) 

Hidden layer 

node 

Input data Output data 

DO 

1 2n ~ 6n DOt DOt+1 

2 2n ~ 6n DOt, TEMPt DOt+1 

1 2n ~ 6n BODt BODt+1 

BOD 

2 2n ~ 6n BODt , CODt BODt+1 

2 2n ~ 6n BODt , Qt BODt+1 

3 2n ~ 6n BODt , CODt, Qt BODt+1 

SS 

1 2n ~ 6n SSt SSt+1 

2 2n ~ 6n SSt, Qt SSt+1 

 

 

 

 

 

 

Figure 1. Comparison between observed and estimated values for DO, BOD, and SS (SS Model) 
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Table 3. Statistical analysis of neural network models at Mihocheon. 

Index Model Average SD Skewness RMSE 

 DO(1)4n5000 9.487 2.203 0.817 1.411 

DO (mg l
-1

) DO(2)2n5000 9.467 2.262 0.814 1.394 

 DO(2)4n3000 9.485 2.288 0.788 1.367 

 BOD(1)2n3000 4.593 2.519 0.826 1.258 

BOD (mg l
-1

) BOD(2)2n5000 4.913 2.866 0.976 1.587 

 BOD(3)4n5000 4.387 2.437 0.604 0.127 

 SS(1)4n5000 17.759 12.694 1.242 5.694 

SS (mg l
-1

) SS(2)2n3000 16.983 12.502 1.552 4.652 

 SS(2)4n1000 16.989 12.145 1.315 5.312 

 

 

 

 

Figure 2. The learning results of neural network models for DO, BOD, and SS (ANN Model) 
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Figure 3. Comparison of observed and estimated water quality(SS and ANN Model) at Mihocheon for DO, BOD, and SS 

Table 4. Characteristics of statistics on water quality at Mihocheon 

Index Model Average SD Skewness RMSE 

 Observed 9.667 2.406 0.682  

DO (mg l
-1

) Neural Network 9.663 2.301 0.429 0.948 

 State Space 10.390 3.063 0.119 1.677 

 Observed 5.042 3.807 1.430  

BOD (mg l
-1

) Neural Network 4.863 3.764 1.611 0.434 

 State Space 5.263 5.158 1.584 1.711 

 Observed 14.725 14.794 1.544  

SS (mg l
-1

) Neural Network 14.059 14.732 1.677 1.364 

 State Space 16.900 13.205 0.278 10.412 

 

In Table 2, the average, standard deviation and skewness 

values of both observed and estimated variables are in 

agreement, so the proposed state space model seems to be 

applicable.  

3.3. Neural Network Model 

The neural network model is proposed as time series form 

to forecast water quality using a dataset containing 

monthly values. Autocorrelation analysis and cross 

autocorrelation analysis are performed to determine the 

input shape for water quality forecasting at Mihocheon 

station. As a result, water temperature and DO show a 

clear periodicity over a 12-month period. However, BOD 

shows less correlation with lag time even though there are 

some constant characteristics. In the case of BOD, 

discharge is shown to be the most critical factor. In 

particular, Lag-1 affects Lag+2 for BOD, so the discharge 

is considered as input data. With respect to SS, there is no 

particular factor found in the cross autocorrelation analysis.  

The construction of the model for water quality forecasting 

is shown in Table 3 based on the autocorrelation and cross 

autocorrelation analyses. Mihocheon station is in the first 

branch of the Geum river basin, and it has a characteristic 
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higher average water quality concentrations compared to 

those of other learning stations in the main river. The 

learning results of neural network models, for each 

proposed one, are shown in Table 3 and Figure 2, The 

DO(2)4n3000 model is selected as a well-trained model for 

DO prediction through learning. In the DO(2)4n3000 

model, ‘DO’ indicates the water quality parameter, ‘(2)’ 

indicates it is the second model of itself in Table 3; ‘4n’ 

indicates the number of nodes in the hidden layer with ‘n’ 

as the number of inputs, and ‘3000’ is the number of 

iterations. For the BOD model, BOD(3)4n5000 seems to 

be in good agreement between estimated and observed 

values on average, SD, and skewness using overflow 

discharge as input data. For the SS model, SS(2)2n3000 is 

selected as the optimized model.  

3.4. Validation of the presented model 

The accuracy in prediction for water quality was examined 

using the proposed state space model and neural network 

model. This examination was compared to the data sets, 

collected from January in 2008 to December in 2008, for 

each water quality items. The most accurate model was 

selected as a water quality forecasting model at Mihocheon 

station. The result of the water quality forecasting was 

obtained by evaluating and applying an appropriate model 

from the proposed models. The result is shown in table 4 

and figure 3. In table 4, average and standard deviation for 

BOD forecasting models are in a good agreement. The 

respective values are 4.863 and 3.764 for the neural 

network model and 5.263 and 5.158 for state space model. 

However, For DO and SS forecasting models, the state 

space model has a tendency to over or underestimate. 

Therefore, the neural network model was selected as a 

final water quality forecasting model at Mihocheon station.  

Conclusions 

In this study, the water quality forecasting model at 

Mihocheon station is implemented by performing the 

proposed state space and neural network models, and the 

suitability of the models is evaluated.  

For the state space model at Mihocheon station, the order 

was determined to be VARMA (3,3) through the result of 

the forecast results by state vector modeling. 

For the neural network model, three sub-categorized 

models were introduced, including DO, BOD, and SS 

forecasting models. The DO forecasting model was 

determined to be DO(2)4n3000, the BOD forecasting 

model was determined to be BOD3(4n)5000, and the SS 

forecasting model was determined to be SS(2)2n3000.  

The statistical characteristics, RMSE, average, SD, and 

skewness were considered to verify the accuracy in 

predicting the water quality through the proposed models 

in this study. The neural network model was finally 

selected as a fundamental model for water quality 

forecasting at Mihocheon station. The neural network 

model developed for the Mihocheon station can be 

employed for the development of a water quality 

emergency management plan so as to ensure sustainable 

water resource management in the basin. 
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