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Abstract Detrimental effects of chemical pollution - 

primarily caused by human activities - on surface waters 

and aquatic ecosystems, have increasingly gained 

attention. This pollution causes destruction of habitat, 

leading to a decrease in biodiversity. Mercury is the only 

metal incorporated in the EU list of priority compounds 

recommended to be measured in biota, preferably in tissue 

of prey species (Directive 2013/39/EG). Because of its 

hydrophobic qualities, mercury is prone to easily bio-

accumulate and magnify through the food chain, which 

will eventually also affect humans. In the present study, 

accumulated levels of mercury are compared in both 

muscle and liver tissue of perch (Perca fluviatilis) and 

European eel (Anguilla anguilla) collected at 15 sampling 

locations in Flemish (Belgian) waterbodies. These results 

will create a better insight in respect to which 

concentrations are accumulated in fish species with 

different backgrounds as well as the internal distribution 

within the organism. Furthermore, effects of size, weight 

and sex are taken into account, since both age and 

reproduction are expected to have an influence on 

accumulation and storage of pollutants. The results show a 

correlation of accumulated mercury with indicators of age 

and/or condition (i.e. length, weight. No difference 

between sexes could be found. Furthermore, a significant 

difference in accumulated mercury levels between targeted 

species could be found, with the highest concentrations in 

eel. In perch, higher concentrations could be found in 

muscle compared to liver tissue.  

 Keywords: mercury, accumulation, fish, internal 

distribution.  

1. Introduction 

The global threat of chemical pollution of surface waters to 

the aquatic environment has increasingly gained attention 

during the past decades. This contamination can have acute 

and chronic toxic effects on aquatic organisms. 

Furthermore, pollutants accumulate in the ecosystem, 

leading to a loss of habitats and biodiversity, and a possible 

threat to human health (EC 2013). Most chemical 

compounds, such as metals, will enter the environment due 

to anthropogenic activities. 

Mercury has a wide applicability, such as in industry (i.e. 

production of car components), mining, households (i.e. 

batteries), agriculture (i.e. pesticides) and will enter aquatic 

ecosystems through among others erosion and both 

industrial and domestic discharges (Kidd & Batchelar 

2012; Selin 2009). The largest portion, however originates 

from atmospheric deposition as a result of fuel combustion, 

causing long-range transport. Due to its very persistent 

characteristics, mercury will remain present in the 

environment for a considerable amount of time. 

Due to its hydrophobic and lipophilic characteristics, 

mercury has a very low solubility in water (Kidd & 

Batchelar 2012). It binds to small organic particles and 

sediment. In this way, it may bio-accumulate in biota and 

biomagnify through the food chain (Lavoie et al. 2013; 

Wiener et al. 2003). Once ingested, mercury will become 

bio-available to the individual through enzymatic and 

bacterial processes inside the digestive system (Kidd & 

Batchelar 2012). Subsequently, mercury is transformed 

into its organic, methylated form (i.e. methylmercury) and 

translocated to different body parts or organs. In general, in 

fish the largest portion (>90%) of mercury consists of 

methylmercury (Bloom 1992; Kannan et al. 1998; Chvojka 

et al. 1990). 

Internal distribution of mercury depends mainly on the 

exposure route (Régine et al. 2006). Ingestion of particle 

bound mercury, mostly in its organic form will be 

transported to the muscle. On the other hand, absorption 

through the gills, mainly in its inorganic form, will be 

accumulated in the organs, with the liver being a main 

target tissue for inorganic mercury. For piscivorous or 

omnivorous fish, the main exposure route will consist of 

diet- or particle bound (methyl)mercury (Régine et al. 

2006). 

Mercury can act as a potent neurotoxicant, especially in its 

organic form, and therefore, will interfere with both 

perceptive systems (i.e. vision, hearing) and movements 

(i.e. inability, spasms) (Clarkson 1992; Kidd & Batchelar 

2012). Exposed fish can experience deleterious effects on 
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their growth, development, and reproduction. Through the 

effect of biomagnication, mercury present in the 

environment can also affect top predators and mammals, 

including humans.  

Both fish species are frequently used for monitoring 

purposes (Ion et al. 1997; Belpaire & Goemans 2007). 

These are very common species, which allows for a 

comparison of accumulated levels between different 

countries. Furthermore they are residents, creating a 

reliable image of a relatively restricted area and they are 

relatively tolerant to pollution (Ion et al. 1997). 

Furthermore, because of their high trophic level, they 

accumulate higher levels of pollutants, due to 

biomagnification (Belpaire & Goemans 2007). This 

facilitates the detection of  the problem (high accumulation 

levels) in the food chain. 

Both size and weight are considered indicators of age (Ion 

et al. 1997). Older individuals have been exposed to 

polluted areas for a longer amount of time and are likely to 

have accumulated higher levels (Weis & Ashley 2007; 

Szefer et al. 2003; Batchelar et al. 2013; Durrieu et al. 

2005). Furthermore, sex can also play a role in the 

accumulated mercury levels. As females produce a large 

amount of lipid-rich eggs, it is considered that fat-soluble 

contaminants, such as mercury, are eliminated during 

spring spawning. 

Within the present study we hypothesize that (1) higher 

mercury levels are to be expected in fish with higher 

weight and size; (2) no significant difference in mercury 

content is to be found between sexes, since sampling took 

place during autumn; (3) higher concentrations are 

expected in the most fat containing fish species, eel. (4)  

higher accumulated Hg concentrations are expected to be 

found in muscle compared to liver tissue. 

2.    Methods 

A total of 15 sampling locations were selected in Flanders 

(Belgium). Perch and/or eel where caught by the Institute 

for Nature and Forest Research (INBO) between 2012 and 

2015 as part of their Fish Monitoring Project. Fish were 

sampled using electrofishing/fykes, depending on the depth 

of the water body. 

 

2.1. Sample preparation 

 

A total of 178 perch and 73 eel were caught. Before 

dissection, length and weight of individual fish were 

determined. During dissection, sex of the individual perch 

was visually determined (N=160), for eel this was not 

possible. Fish were dissected, muscle (N=277) and liver 

tissue (N=196) isolated, and frozen at -20°C until analysis.  

2.2. Mercury analysis 

After freeze drying, the digestion of the samples was 

performed in a mixture of HNO3 and HCl (1:3), in order to 

keep the stability of mercury in solution, using a 

pressurized microwave digestion system, Discover SP-D 

(CEM Corporation, Matthews, NC 28106, USA). Analysis 

was performed using a high-resolution Inductively 

Coupled Plasma Mass Spectrometer (HR-ICP-MS) 

(Thermo scientific Finnigan element 2, Altham, MA, 

USA), in cold plasma mode. Reference material included 

freeze dried muscle tissue (no. 2976) from NIST (National 

Institute of Standards and Technology-USA). 

2.3. Statistical analysis 

Statistical analyses were performed using the software 

package R. A Pearson correlation was determined between 

weight and length measures, between dry and wet weight 

and between liver and muscle tissue. A linear regression 

was performed to investigate the relation between 

accumulated levels and length/weight. To investigate 

different accumulated mercury levels in respectively 

species, sex and tissues (muscle of liver), linear mixed 

models were composed for each of these variables with 

location as fixed effect. For these analyses a ‘backward 

stepwise variable’ selection was used. Furthermore, a log-

likelihood ration test (χ² test) was performed to determine 

the significance of the variables. Significance levels were 

set at a p-value <0.05. 

3.    Results and discussion  

All length measures correlated very well (r ≥ 0.99), as well 

as dry weight and wet weight (r≥87), and Hg levels in liver 

and muscle (r≥62). For further analysis, mercury 

concentrations in dry weight are used to be able to perform 

a more standardized comparison between species and 

tissues. Weight showed and exponential increase with 

increasing length for both eel (R²=0.86) and perch 

(R²=0.88). 

Mercury accumulation increased with increasing length for 

perch in both muscle (F=63.37; p<0.001; R²=0.30) and 

liver tissue (F=47.28; p<0.001; R²=0.23) (Figure 1). For 

eel, this was true for muscle (F=14.65; p<0.001; R²=0.17) 

but not for liver tissue (F=0.15; p=0.70; R²=0.004). 
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Figure 

1. Relation between total length of the individual and the accumulated mercury concentration in muscle (LEFT) and liver 

tissue (RIGHT), for both perch and eel, mean values with standard error. 
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Figure 

1: Accumulated mercury level in perch (LEFT) and eel (RIGHT), mean values with standard error. For perch both sexes 

and tissues are displayed. For eel only tissues are shown. 

 

No significant difference in accumulated mercury levels 

was found between sexes in perch in muscle tissue (df=1; 

χ²= 1.16; p=0.28), neither in liver tissue (df=1; χ²=0.34; 

p=0.56) (Figure 2). This could be explained by the fact that 

sampling took place during autumn, outside spawning 

season. During this time period, females don’t shed lipid-

rich eggs, possibly containing mercury. 

A significant difference in accumulated levels was found 

between both species in muscle tissue (df=1; χ²=32.98; 

p>0.001) as well as in liver tissue (df=1; χ²=163.55; 

p<0.001), with higher levels in eel than in perch for both 

tissues. For perch a significant difference between liver 

and muscle accumulated levels could be found (df=1; 

χ²=75.94; p<0.001). Accumulated mercury levels in 

muscle were higher than those in liver. A considerable 

amount of the ingested mercury is diet or particle bound, 

available in its organic form and will be transported to the 

muscle tissue. For eel, no significant difference in mercury 

levels between tissues was found (df=1; χ²=0.95; p=0.33). 

Higher concentrations in eel could be explained by the 

high fat content of these fish. The hydrophilic properties of 

mercury cause it to easily accumulate in fat tissue. A 

higher fat content, therefore, can lead to a higher mercury 

level. 

4.    Conclusion  

The correlation of accumulated mercury with indicators of 

age and/or condition (i.e. length, weight), confirms the fact 

that mercury is bio-accumulated inside these animals. No 

difference between sexes could be found probably due to 

sampling outside the breeding season. A significant 

difference in accumulated mercury levels between targeted 

species could be found, with the highest concentrations in 

eel. In perch, higher concentrations could be found in 

muscle compared to liver tissue. These findings should be 

taken into account during selection of appropriate 

monitoring species and sizes of the individuals (i.e. biota-

monitoring). 
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