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Abstract 

Urban forest fires constitute a natural disaster presenting 

many particularities and specific difficulties. Such 

difficulties include the high number of people visiting 

urban forests as well as some specific forests 

characteristics which include the flammable species 

involved and the high levels of accumulated 

combustible biomass. The main purpose of the current 

research is to quantify the optimum combination of 

silvicultural treatments in order to efficiently reduce 

forest fire potential severity and contribute to their 

successful suppression by firefighting crews under field 

conditions. In order to simulate the basic fire 

environment of urban forests, two main experimental 

plots were established and several tree and 

topographical characteristics were estimated. 

Additionally, the NEXUS wildfire system was used to 

simulate forest fire potential behavior before and after 

the adoption of the silvicultural treatments that altered 

critical characteristics of the forest fire environment. 

The results clearly showed that specific silvicultural 

prescriptions altered the type of forest fire spreading 

potential, revealing the overall efficiency of preventing 

actions during forest management.  

Keywords: urban forests, silvicultural treatments, 

NEXUS, simulation, fire  

1. Introduction 

Fire is the most frequent natural threat to forests and 

wooded areas of the Mediterranean basin. It destroys many 

more forests and forest lands than all other natural threats, 

such as parasite attacks, insects, tornadoes, snow and frost. 

Unlike other parts of the world where a large percentage of 

fires are naturally caused (especially lightning), the 

Mediterranean basin is marked by the prevalence of 

human-induced fires. Natural causes represent only a small 

percentage of all fires (1-5%, depending on the country) 

(Alexandrian et al. 2008). During the last 30 years, 

destructive forest fires burned millions of hectares of forest 

in Greece. The most devastating incidents took place in 

Lesvos 1982 and Ikaria 1993, Samos 1983 (Thanos et al. 

1989; Thanos and Markou 1991; Thanos and Doussi 

2000), Attika 1984 (Zagas 1987) and 2008, Thasos 1985 

and 1989 (Spanos et al. 1996; 2000; 2001), Thessaloniki 

1997 (Tsitsoni et al. 2004; Spanos et al. 2010), Chalkidiki 

1990 and 2006 (Spanos et al. 2005), Peloponnese and Evia 

2008). The peri-urban forests are very vulnerable in terms 

of fire occurrence and spread. They cover a total area of 

105,353 hectares in Greece, mainly from afforestation 

activities of Forest Service during 1950 (Christopoulou et 

al.  2007). However, the rapid spread of urban areas 

occupying bordering forested and agricultural land created 

the Wildland Urban Interface (WUI), a new regime of land 

use intermix notably distinguished in a typical 

Mediterranean landscape. Currently available individual 

and public community transport to urban areas implies that 

an even greater proportion of land has urban development 

potential. Nevertheless, the main issue is the steadily 

growing interface between wildland and urban areas, in 

particular with the development of diffuse individual house 

construction, in relation to loose policies in the approval of 

building permit. Relationships can be established between 

spatial repartition of forest fire ignition points and wildland 

urban interfaces (Vélez 2008).  Studies have shown that 

around three quarters of fire ignition points are located in 

the interfaces and the majority of them occur at the 

interface type characterized by high aggregation of 

vegetation and high density of houses. Moreover, when 

forest fires break out the priority in fire suppression is 

logically given to the protection of people and houses, 

leaving the forest to be burnt (Caballero et al. 2007; Vélez 

2002). Suburban forests fires constitute a natural disaster, 

with many particularities and specific difficulties. Fires of 

suburban forests is a problem that in the last twenty years 

has become a distinctive and of high importance theme 

drawing great interest from scientists and professionals 

dealing with forest fires worldwide (Fischer and Arno 

1988; National Wildfire Foundation 1992; Queen 1993; 

Slauther 1996). In addition, fires in the suburban zone are 

very frequent in Greece. During 2000-2011, about 2692 

fires had been recorded only in the Attiki region (Salvati 

2014). The suppression of the suburban fires present some 

difficulties related to the following characteristics of the 

fire environment (Xanthopoulos 2000), such as: 

 high risk of human life loss 

 existence of properties e.g. homes, businesses 
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 possible existence of significant differences in the 

composition and distribution of the fuel space 

 potential impact on the environment components (fuel, 

wind) buildings and other residential development 

elements in the area 

 existence of infrastructure such as roads, water points, 

electricity and telephone networks etc. 

Key element in firefighting activity is to prevent some 

aspects of fire behavior which precludes any successful 

suppression, by altering fuel characteristics of the fire 

environment. In the world literature, a significant number 

of studies have been contacted on methods of fuel 

treatment for lowering wildfire‟s severity (Agee and Lolley 

2006; Harrington et al 2006; Horschel 2007; Huggett et al 

2008; Roccaforte et al 2008; Molina et al  2011). In the 

majority of these studies, the evaluation of fuel treatment 

effectiveness has been mainly based on the application of 

several fire models such as FARSITE, FlamMap and 

NEXUS, simulating wildfire behavior before and after the 

establishment of various silvicultural treatments. The aim 

of this study was to assess the potential effectiveness of 

simulated silvicultural treatments on wildfire severity in 

urban pines forests in Greece. The research is based on two 

installed sample plots across two typical peri-urban forests 

located in Northern Greece. Since real experiment is 

impractical and unacceptably risky, simulation is an 

alternative approach to testing potential fuel treatment 

effectiveness (Schmidt et al 2008). 

2. Material and methods 

2.1. Study area 

The study areas were located in the urban forests of 

municipality of Thermaikos, 20Km northwest of 

Thessaloniki, Greece (40
o
31΄N, 23

o
37΄N) along the road 

"Thessaloniki - Ag. Triada - N. Michaniona" crossing the 

districts Peraia - N. Epivaton and Agias Triadas. The 

climate is typical Mediterranean, with clear continental 

influence during the different seasons: the temperature 

presents higher values in July (26.6°C) and the lowest in 

January (5.2°C), the annual temperature range exceeds 

20°C, while during the cold season sudden very cold air 

masses occur and often frozen water surfaces. 

Characteristic also are the mild and sunny days that happen 

around the middle of winter. The annual average relative 

air humidity rises to 78.11% and the average annual 

rainfall at 431.5 mm. Winds directions are different 

depending on the seasons: a northern dominates during the 

winter coming from the Axios river Valley (Vardar), in the 

spring the most frequent are southwest (sea breezes), and 

the summer is dominated by northern and southwestern 

winds (sea breezes). The Thermaikos Municipality area is 

characterized by the crystal and sedimentary rocks.  Within 

the areas of interest,  the dominant tree vegetation consists 

of artificial pine stands (Pinus halepensis & brutia) and 

cypress (Cupressus sempervirens) along the road Perea -N. 

Epivates -St. Triada and Quercus ilex. Also in the region 

can be found: 

 herbaceous vegetation mainly in riverbeds in the urban 

area, with characteristic species Phragmites communis, 

Typha angustifolia and Xanthium strumarium. 

 shrubby vegetation of the river bed and slope streams, 

with characteristic species of Rosa sp., Rubus 

canescens, Ramnus rupestris and Asparagus sp. 

 other tree vegetation, located mostly on steep slopes 

from the side of the road to the hinterland. Other 

species that appear are Ulmus campestris, Salix sp., 

Populus alba and Tamarix sp. 

2.2 Experimental design and sampling 

The effects of silvicultural treatments for reducing fire‟s 

potential severity in urban forests were evaluated in two 

plots (20m x 25m), by estimating several dendrometric 

characteristics of each tree located within these plots 

(Figure 1). The two plots were selected for their different 

structure. At the first plot there has been no treatment, 

while at the second plot clearcuttings (mechanical 

treatments) of all shrubs and pine pruning to the height of 

2m from the ground, were installed by the managing local 

authorities . 

 
 

Figure 1. A general aspect of the two experimental plots. On the left plot 1 and on the right plot 2 

 

In both plots a series of observations were recorded at tree 

and stand level, such as the total numbers of stems, the 

height (H) of each tree, the canopy base height (CBH) and 

diameter at breast height (DBH1.30). The CBH corresponds 

to the average distance between the lowest continuous live 

or dead branches of the tree canopy down to the ground 

(Ottmar et al. 1998). In addition, inside small rectangular 

plots (1 m x 1 m), we evaluated the ground biomass and 

moisture by collecting plant litter and plants. For the needs 

of the research, five rectangular subplots per experimental 

plot were established. Samples were transported to the 

laboratory in airtight containers, weighted, oven dried for 
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24 h at 105
o
C and then reweighed (Spanos et al. 2005). 

The slope of each plot was estimated using a Meridian 

clinometer as well as the canopy cover through a spherical 

densiometer (Lemmon 1956).

 

 
Figure 2. Collecting plant debris and plants in the rectangular plot 

 

2.3 Fuel characteristics 

 

2.3.1 Aerial fuel 

 

The allometric equations for Pinus halepensis Mill. 

proposed by Mitsopoulos and Dimitrakopoulos (2007) 

were used for the estimation of the total Canopy Fuel Load 

(CFL). Based on the above equations, the available crown 

fuel load (needles and branches 0.0-0.63cm) for each tree 

was calculated. The CFL was estimated by summing the 

available fuel load of each tree and diving it to the area 

occupied by each experimental plot (500 m
2
). The total 

above ground biomass fuel was considered to be uniformly 

distributed and continuous. Also the Canopy Bulk Density 

(CBD) was estimated by diving CFL to the average canopy 

length of the individuals of each sample plot (Alexander 

1988; Fernades et al. 2004). 

2.3.2 Surface fuel 

The data obtained from the installed subsample plots 

leaded to the creation of custom fuel models for the area, 

following the methodology proposed by Scott and Burgan 

(2005) and the NEWMDL tool of the BEHAVE modeling 

system. Surface fuels divided into four classes, based on 

the diameter of each component (1 h, 10 h, 100 h, and 

1000 h). The surface per volume ratio (SAV – m
2
/m

3
), the 

heat content (kj/kg) and the extinction moisture obtained 

from Dimitrakopoulos and Papaioannou (2001), Fire Star 

(2007) and Bacciu (2009). The results are presented in 

Table 1.  

2.3.3 Simulation 

The NEXUS modelling system has been widely used by 

many researchers to evaluate the effectiveness of fuel 

treatment scenarios. It provides the possibility to calculate 

key indicators, such as Torching Index (TI) and Crowning 

Index (CI) that allow direct comparison of the 

effectiveness of various possible scenarios arising from 

silvicultural treatments (Scott 1999). The NEXUS 

modelling system from the array of available models, 

couples the most widely used for this analysis: 

Rothermel‟s surface (1972) and crown fire models (1991), 

and Van Wagner‟s (1977) models of transition to crown 

fire (Scott 1998; 1999; Fule et al 2001; Cheyetee et al 

2008). 

2.3.4 Silvicultural Treatments 

At first stage, the current conditions of fuel regime was 

used as input to the NEXUS simulation system so as to 

estimate the potential fire behavior by calculating critical 

values of fire front (Rate of Spread, Fireline Intesity, 

Flame Length and CI). In the second stage, the effects of 

thinning and clearings were evaluated by reducing the 

corresponding stand parameters while keeping the same 

weather and topographical conditions. The treatment of 

mechanical removal of the understory (clearings) was 

simulated in the first plot by replacing surface fuel load 

with pine litter and debris, obtained by plot 2. Furthermore, 

the thinning effects applied only in plot 2 by reducing the 

basal area and the corresponding canopy fuel load to 25% 

from the initial value. It was theorized that tree cutting 

would not change the surface fuel load significantly, 

following the findings of Silva et al (2000) in a 

Mediterranean-type ecosystem.   

3. Results 

The following table (Table 1) indicates the main physical 

and chemical properties of the mean values of total surface 

fuels in each plot. The mean value of litter‟s surface 

biomass measured in the first experimental plot surface 

was 1,640 kg/m² and for the second experimental plot 

2,020 kg/m². The highest values of litters‟ surface load on 

the second plot may be attributed to the clearings effects 

and the remained biomass during mechanical treatments. 

The following table (Table 2) indicates the main 

dendrometric data measured in the field. The values consist 

of the imputed data to NEXUS simulation system in order 

to estimate the potential fire behavior. Fuel moisture 

content values (percent) by size class for seasonal moisture 

conditions was estimated using NEXUS module for 

estimating moisture content (Table 3) and the “Normal 

Summer” moisture values proposed by Rothermel (1991). 

The shading parameter follows the values obtained from 

Canopy Cover estimation (%). The simulation results 

before treatments for the first and second experimental 

plots are presented in Table 4. It was theorized that 

removing 25% of the initial basal area has not reduced 

canopy cover lower than 50% and the moisture content of 

the surface fuels remained stable. However, during heavy 

thinnings (50%) the canopy cover reduced significantly 
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and the moisture content re-calculated, using canopy cover 

input lower than 50%. The simulation results after 

silvicultural treatments are presented in Table 5.

Table 1. Physical and chemical properties of the total sample 

Properties 
Custom Fuel Model 

CFM 1: Pine litter CFM 2: Shrub (kermes oak) 

1h (tonne/ha) 1.232 1.109 

10h (tonne/ha) 0.408 0.522 

100h (tonne/ha) - 0.389 

Live Herbaceous Fuel Load (tonne/ha) - - 

Live Woody Fuel Load (tonne/ha) - 8.857 

1h SA/V (m
2
/m

3
) 6,249 2,427 

Live Herbaceous SA/V (m
2
/m

3
) - - 

Live Woody SA/V (m
2
/m

3
) - 5,960 

Fuel Bed Depth (m) 0.210 1.977 

Extinction Moisture (%) 35 25 

Dead Heat Content (kJ/kg) 22,137 19,460 

Live Heat Content (kJ/kg) - 19,460 

Table 2. The primary data of the two experimental plots 

 
Experimental 

plot 1 

Experimental 

plot 2 

Stems per hectare  460 360 

Diameter at Breast 

Height (cm) 
20.16 30.27 

Tree Height (m) 12.27 17.19 

Canopy Base 

Height (m) 
4.97 10.57 

 Canopy Fuel 

Load (kg/m
2
) 

0.577 0.862 

Crown Bulk 

Density (kg/m
3
) 

0.079 0.134 

Table 3. Weather scenarios and topographical conditions 

used for the simulation 

  

 

 

Table 4. Fire behavior according to NEXUS outputs before treatments 

Pyric parameters (before treatment) 
Plot 

1 2 

Fire type Passive crown fire Intermediate crown fire 

Rate of spread (m/min) 18.63 15.3 

Fireline Intesity (kW/m) 19,153 7,737 

Flame length (m) 18 10.4 

Crowning Index (km/h) 35.6 26.4 

   

 

Weather Inputs 

Temperature (
o
C) 31.5 – 42.4 

Relative humidity (%) 20-25 

Month August 

Hemisphere Northern 

Time 15:00-17:00 

Wind (km/h) 25 

Wind direction Upslope 

Shading (Canopy Cover - %) >51 

Topography  

Slope (%) 30 
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Table 5. Fire behavior according to NEXUS outputs after treatments 

Pyric parameters (after treatment) 
Plot 

1 2 (25%) 2 (50%) 

Fire type Surface fire Surface fire Surface fire 

Rate of spread (m/min) 1.46 0.81 0.87 

Fireline Intesity (kW/m) 149 82 93 

Flame length (m) 0.8 0.6 0.6 

Crowning Index (km/h) 35.6 33.3 44.3 

 

4. Discussion 

The basic objective of silvicultural treatments is to prevent 

the initiation and the propagation of a crown fire in order 

to create favorable conditions for fire-fighting crews to 

launch a successful attack. In this sense, Loureiro and 

Fernandes (2006) set the level of 2,000kW/m as the 

maximum withstandable fireline intensity for the 

firefighting ground forces, while beyond 4,000kW/m 

indirect methods are needed for fire suppression. 

According to the results of table 4, the simulated fireline 

intensity reached 19,153kW/h in plot 1 and 7,737kW/h in 

plot 2, precluding any direct suppression of the fire‟s front. 

However, based on the results of table 5, the proposed 

treatments prevent fire from crowning in both plots, 

retaining it on the surface. In these occasions, the pyric 

parameters remained at low levels so as to be easily 

contained by firefighting forces.  

A set of “firescale principles” as adapted from Agee and 

Skinner (2005) can be defined (Table 6). Forests treated 

with these principles will be more resilient to wildfires. 

 

Table 6. Principles of fire resistance for dry forests (Agee, 2002 and Hessburg and Agee. 2003). 

Principles Effect Advantage Concerns 

Reduce surface 

fuels 

Reduces potential 

flame length 

Control easier; 

less torching 

Surface disturbance less with 

fire than other techniques 

Increase height 

to live crown 

Requires longer flame 

length to begin torching 
Less torching 

Opens understory; may allow 

surface wind to increase 

Decrease crown 

density 

Makes tree to tree crown 

fire less probable 

Reduces crown 

fire potential 

Surface wind may increase and 

surface fuels may be drier 

Keep big trees of 

resistant species 

Less mortality for same 

fire intensity 

Generally restores 

historic structure 

Less economical; may keep 

trees at risk of insect attack 

The effectiveness of two of the four proposed principles is 

assessed in the current research. In plot 1, the low CBD 

affected fire type and prevent from active crowning. 

However, the dense understory increased available fuel 

load and resulted to high levels of flame length and 

intensity. On the contrary, in plot 2 the dense canopy 

provided the necessary conditions for active crowning 

since CI factor is low, but the reduced surface load due to 

thinning, prevent torching of the low canopy parts. In this 

experimental plot, it is not expected foliar ignition during 

the early stages of fire as a result of the vegetation 

characteristics. However, if foliage ignition may occur at 

some point within the stand, then active crowning is 

expected. The simulated silvicultural treatments aimed at 

the most critical parameters of the two stand structures. In 

plot 1, clearings reduced surface load significantly and the 

potential fire could not transmitted to tree foliage. It should 

be mentioned that in conjunction with a thinning treatment 

corresponding to 10% of the basal area, can be obtained 

even milder combustion conditions judged as treatable by 

ground firefighting forces. In plot 2, thinning reduced the 

available aerial fuel load for combustion and the crown fire 

cannot be sustained without higher wind speed. However, 

intensive thinning may result in increased wind-speeds 

inside stand lowering the fuel moisture content, thus 25% 

removal of the initial basal area is seems to be effective. 

Removal of any dead trees, branches and twigs will 

improve fuel moisture conditions within the stand, while, 

in final stage planting with deciduous trees will increase 

foliar moisture content. Pruning of the lowest points of tree 

crowns (over 3 meters from ground level) is actually 

unnecessary due to the high levels of CBH. The 

combination of silvicultural treatments (thinning and 

clearings) changed the forest structure altering the behavior 

of a potential fire. The results reveal that the fuel 

treatments had a direct influence upon fire behavior 

lowering significantly its potential severity. 

5. Conclusions 

Very few forests will receive fuel treatment over their 

entire area due to economic constraints. The forest 

challenge needs to be confronted and where strategic fuel 

treatment will be more effective at reducing wildfire 

damage. Simulations help us decide where and how we 
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will apply necessary treatments to forests. The challenges 

are real, and become more important each year. 

Mediterranean urban forests continue to burn at 

unprecedented rates, emplacing undesirable landscape 

patterns and reducing opportunities for restoration. Our 

greatest challenge is to expand that scale with socially 

acceptable treatments to sustain these forests. 
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