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Abstract.  

Waste mobile phones are one of the subgroups of WEEE 

defined as discarded electronic products.  This study 

estimated current and projected quantities of waste mobile 

phones in the Philippines using feed forward neural 

network. The neural network architecture used had three 

(3) layers: input layer, hidden layer and output layer. Seven 

(7) input factors were used during the learning phase of the 

network namely (i) population, (ii) literacy rate, (iii) 

mobile connections, (iv) mobile subscribers, (v) gross 

domestic product (GDP), (vi) GDP per capita and (vii) US 

dollar to peso exchange rate. The structure was designed 

with 5 hidden layers which consisted of; six (6) neurons 

for layer 1, five (5) neurons for layer 2, four (4) neurons 

for layer 3, three (3) neurons for layer 4 and two (2) 

neurons for layer 5. The neural network was designed to 

calculate first for the sales of mobile phones before 

estimating waste mobile phone generation. Visual Gene 

Developer 1.7 Software was used which showed an error 

of ±0.00001. Estimates and predicted values were found to 

be in good agreement with a calculated accuracy of 99%. 

This study can be used by policy makers as strategy, and as 

guideline and baseline data for establishing a proper 

management system for WEEE. The developed neural 

network performed better than the traditional linear 

extrapolation method for forecasting of data. 
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1. Introduction 

Mobile phones have been one of the most popular among 

personal electronic devices in the Philippines since the 

country is known as the “texting capital of the world” as 

well as the “social media capital of the world” (GSMA 

Intelligence, 2015). Mobile devices are classified into two 

(2) categories: smartphones and feature phones. 

Smartphones are mobile devices that perform several 

functions of an integrated computer while feature phones 

are basically low-end mobile phones. Smartphones 

outperform feature phones due to their advanced operating 

systems, thus having higher penetration rates. This study 

dealt with a combination of the volume of waste mobile 

phones from both categories in the country.  According to 

Sata (2013), the two (2) factors that affect consumers’ 

preferences in buying mobile phone are the price and 

features of the devices as indicated in an analysis of 

consumer behavior by the Euromonitor International 

Journal and GSMA Intelligence (2015). Araujo et al. 

(2012) classified mobile phones under non-mature markets 

which means that their demand grows faster than the 

population.  In this instance, bulk quantity of waste mobile 

phone is expected to rise due to the bustling transition of 

mobile phones in the market. Managing this particular type 

of WEEE is a pressing environmental challenge which 

may prompt government authorities to revise and update 

current policies and formulate clear guidelines. In the 

Philippines, an estimation of WEEE (Waste Electrical and 

Electronic Equipment) that is recycled, re-used, stored and 

disposed in landfills was conducted by Peralta et al. (2005) 

but mobile phones were excluded in the study. There are 

various estimation models available from the literature 

using input-output analysis, time series, regression models, 

market analysis models and mathematical equations. Each 

of these models differs from one another.The neural 

networks estimation method is a powerful tool for 

predicting values due to its non-parametric property. It is 

analogous to the operation of the human brain that involves 

neurons. Each neuron is connected to other neurons known 

as synapses which are activated depending on the input 

pulse. Synapses link information between connected 

neurons which are arranged in a layered fashion 

(Theodoridis, 2015). 

2. Materials and method 

2.1 Neural Networks Configurations 

The different steps of the study is shown Figure 1.The 

neural networks training process was carried out using 

Visual Gene Developer 1.7 Software. During the training 

process, the software initially normalizes the input values 

to lessen the distance between magnitudes of the 

predictors. The next step is the initialization of the weight 

of the synapse to compute the value of every hidden layer. 

When the value of hidden layer is obtained, an activation 

function is used to transform the activation level of a unit 

(neuron) into an output signal. This study employed the 

following settings in the Visual Gene Developer 1.7 

Software to obtain the target output. 

2.1.1. Neural network software 

Visual Gene Developer 1.7 Software provided by 

McDonalds et al. (2011) was used to calculate the 

predicted output.   It is an open-source software capable of 

the following features: construction of neural network 

structure, and provision of neural network map analysis, 
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prediction maps etc. It is of greater advantage over other 

software available online. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Procedure for the study 

Table 1. Training settings in Visual Gene Developer 1.7 

during data training process 

 

2.1.2. Input factors 

In the absence of waste mobile phones data over the past 

years, initially, the neural network model was used to 

compute the sales of mobile phones before estimating the 

waste mobile phones in the country. To obtain the ideal 

input parameters, information from the GSMA Intelligence 

(2015) served as guidelines as to why the Philippines is a 

major innovation hub in mobile ecosystem. According to 

GSMA Intelligence (2015), the country is continuously 

successful in innovation due to (i) demography, (ii) 

economic credibility and (iii) mobile operators active in 

innovation. In line with this, the study employed factors 

that are related with the cited criteria. For instance, 

demography, population and literary rate were used as the 

input factors. For economic credibility, the inputs used 

were gross domestic product (GDP), average income per 

capita (GDP per capita) and US Dollar to Philippine Peso 

Exchange Rate. For the mobile operators, data for the 

number of mobile connections and unique mobile 

subscriber were used. Note that according to GSMA 

Intelligence (2015), mobile connections are the number of 

sim (Subscriber Identity Module) cards that an individual 

possesses while unique subscribers are those individuals 

who subscribed to a mobile service and who can have 

multiple mobile connections. Historical sales data from 

2010-2015 was obtained from Euromonitor International 

Journal to serve as reference data for the prediction output. 

Imported mobile phones were not covered by this study 

because data from government trade and statistics office 

were not available. Seven (7) input factors were used to 

generate a single output value which is the sales of mobile 

phones. Apart from the average lifespan of mobile phones 

of three (3) years, a survey with 150 respondents was 

conducted to evaluate the disposal/replacement behaviors 

of consumers. The survey consisted of questions about the 

period on how the consumer used their mobile phone 

before it is disposed/replaced. Results indicated that 

consumers dispose/replace their mobile phones in less than 

one year (<1 year), between 1-2 years and 2 years 

onwards. The result of the estimation shall be the values 

for the volume of waste mobile phones generated. 

2.2. Secondary data collection 

Data from different agencies and government offices were 

obtained and served as secondary data. Population data 

was taken from Philippine Statistic Authority (PSA), 

literacy rate was taken from United Nations Education, 

Scientific and Cultural Organization (UNESCO), mobile 

connections and unique mobile subscribers were taken 

from National Telecommunications Commission (NTC), 

Gross Domestic Product, Average income and US Dollar 

to Philippine Peso exchange rate were taken from Trading 

Economics and Central Bank of the Philippines and the 

sales of mobile phones from 2010 to 2015 was taken from 

Euromonitor Journal. Table 2 present the data collected 

from these agencies. 

2.3. Estimation of waste mobile phones 

Data of waste mobile phones for less than 1 year, between 

1 year to 2 years and 2 years and above were derived from 

the results of survey. The model and equation used in 

estimating waste mobile phones are shown below (See 

Figure 2 and Equation 1): 

 

Waste Mobile Phone for a specific year (j) = (x at j) + (y at 

j1) + (z at j2)     Equation. 1 

Where:  

x = waste mobile phone with less than 1 year 

y = waste mobile phone between 1 year to 2 years 

z = waste mobile phone from 2 years and above 

j = specific year 

j1= one (1) year before the specific year 

j2= two (2) years before the specific year 

 

3. Results and discussion 

Results of the survey showed that the average number of 

mobile phones owned per individual is 1.233. The average 

number of sim cards used per mobile phone is 

2.00.Majority of the respondents own smartphones while 

some respondents own both smartphones and feature 

phones.  Nine (9) % of the total respondents disposed 

and/or replaced their mobile phones after one (1) year of 

usage; 54% disposed and/or replaced their mobile phones 

between one (1) to two (2) years of usage and the  

Learning Rate 0.5 
Momentum Coefficient 0.1 

Transfer Function Sigmoid 

Maximum No. of Training Cycle 1,000,000,000 
Target Error 0.00001 

Analysis Update Interval (Cycles) 500 
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Figure 2. Structure of the neural network model 

Table 2. Historical data from different agencies and government offices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remaining 37% disposed and/or replaced their mobile 

phones when it reached 2 years and above. The 9% of the 

respondents that disposed and/or replaced their cellphones 

after one (1) year were mostly users of feature phones. The 

analysis showed that the disposal and/or replacement cycle 

for feature phones is fast because this particular category 

of mobile phone is inexpensive. Advanced features and 

better specifications were among the influencing factors to 

customer’s buying preferences. It is worth noting that 95% 

of the total respondents have no knowledge on proper 

disposal of mobile phones. During the training cycle, 

results showed that at 1.542x10
6
 iterations with the sum 

squared error (SSE) at 0.00001, the obtained generation 

estimates for the sales of mobile phones are 24,638,606 

units for 2016; 24,846,842 for 2017; 24,888,616 units for 

2018; 24,903,568 units for 2019; 24,910,788 units for 2020 

and 24,914,970 units for 2021. Using equation 1, the waste 

mobile phones are 22,850,988 for 2016; 24,279,834 units 

for 2017; 24,773,554 units for 2018; 24,874,505 units for 

2019; 24,898,686 units for 2020 and 24,908,493 units for 

2021. 

4. Conclusion  

Demand for mobile phones will continuously increase. 

Since this type of WEEE is increasing in volume, it poses 

threats not only to the environment but also to human 

health when not properly managed. Realizing this threat, 

this study attempted to do the primary step to address it by 

estimating the volume of waste mobile phones in the 

country. The study was able to estimate data on sales of 

mobile phones and subsequently the waste mobile phones 

in the country from 2010-2021 with a calculated accuracy 

of 99%. 
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