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Abstract  

Species richness pattern is poorly understood at local 

scales. Here we analyse impacts of physiography, climate, 

and edaphic factors on species richness pattern of the 

Eastern Himalaya using 376 spatial location points, 

collected through scientifically designed national level 

sampling assessment.  We fitted nonlinear predictive 

model technique for 1470 species and selected eight least 

correlated predictors through multicollinearity and 

principal component analysis tests. Independently, 

physiography was poorly associated with species richness 

than edaphic and climatic factors. Climate explained the 

maximum deviance of 48 % with a dominant contribution 

from aridity and precipitation of the driest quarter. 

However, the cumulative effects of potential evaporation 

and temperature seasonality expressed significantly with 

interactions. The water stress due to dryness and low 

precipitation play determining role species richness pattern 

and long-term fluctuations in temperature increase their 

vulnerability to climate change. The warmer south is less 

likely to be affected by these changes than the north 

experiencing climatic extremes describing its 

environmental stability. The collective effect of all 

variables and their interactions explained the maximum 

deviance of 58 %; and described climate’s synergy with 

physiography and soil in shaping species richness pattern. 

The study would support for conservation prioritisation of 

the region. 

Keywords: Species richness; generalised additive model; 

climate; soil; physiography 

1. Introduction 

Species richness (SR), defined by a number of species, 

depends on the biophysical condition of a place, varies 

significantly along a broad spatial scale (Francis & Curie, 

2003). However, it is poorly documented at a local scale 

where environmental heterogeneity plays a significant role. 

The physiography significantly influences species diversity 

at local and regional scales (Moeslund et al., 2013). 

Elevation influences climate and soil; and species’ 

composition and phenology patterns of Eastern Himalaya 

(Chettri et al., 2001; Carpenter, 2005); and surface 

ruggedness causes species niche differentiation due to 

geographic isolation (Whittaker et al., 1973). Soil texture 

and composition influence species growth, particularly at 

locale scales (Ricklefs, 1987), i.e., pH in the mountains 

(Dubuis et al., 2013). Climate is a crucial factor in plant 

species distribution (Francis & Curie, 2003) and is 

primarily described by water and energy and their 

interactions (O`Brien, 1993). Hawkins et al. (2003) opined 

water has significant contribution in species distribution of 

tropics, subtropics, and warm temperate zones. How they 

shape SR pattern has always been an interesting topic in 

ecology. The Eastern Himalaya is at the convergence of 

the Indo-Malayan, Afro-tropic, and Indo-Chinese bio-

geographical realms; and with the Himalayan and 

peninsular Indian features. This involved geophysical 

position increases plant SR of the region (Behera et al., 

2002).  Its position along subtropical latitude attributes to 

high solar radiation and a minimum variability in the day 

length (Zobel and Singh, 1997). The winter is dry and 

short, but warm for the latitude (Mani, 1974). The 

warmness of winter is due to greater light availability, and 

summer is less hot due to cloudiness. These tradeoffs 

between tropical and temperate climate influence SR 

pattern of the region. Its complex physiography supports 

rich diversity to about 5800 species in India (Myers, 1988). 

The microclimatic variation in the Eastern Himalaya leads 

to species confinement in different habitats (Hickling et 

al., 2006). Although understanding local drivers of 

biodiversity are significant for conservation, a little 

emphasis has been given at a local scale (Dufour et al., 

2006). Most of the Himalayan studies are along elevation 

gradient (Grytens and Vetaas, 2002; Bhattarai et al., 2004, 

Behera and Kushwaha, 2007; Chhetri et al., 2010; Acharya 

et al., 2011). A comprehensive account of species-

environment relationships is poorly documented especially 

in Indian parts of Himalaya due to lack of data. We took 

advantage of a large floral database, collected through 

scientifically designed sampling method to assess these 

relationships; and used a nonlinear predictive model with 

different predictor combinations to explore the influences 

of both climatic and non-climatic variables on species 

distribution. 

2. Methods 
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The study area includes two Indian states of Sikkim (27°N 

to 28°N and 88°E to 88.8°E) and Arunachal Pradesh 

(25.5°N to 32°N and 91.4°E to 97°E; Figure 1) with a 

similar climate. They exhibit similar physiographic 

complexity and represent a larger extent of EH. The floral 

data were obtained from Biodiversity Characterization at 

Landscape Level, a national level project (Roy et al., 2012) 

with nested quadrat size of 20 m × 20 m for trees. Two 5 m 

× 5 m for shrubs at two corners and five 1 m × 1 m for 

herbs at all angles and the centre of the tree plot was 

considered for sampling (Roy et al., 2002). Synonymous 

species were verified, and standard scientific names were 

assigned by combining subspecies or variety names under 

a binomial nomenclature scheme. Thirty-three variables 

procured from freely available global data sources of three 

major types: (1) climate, (2) physiography, (3) edaphic 

variables were utilised for the present study.  They include 

21 climatic variables of which 19 were acquired from 

Worldclim data (Hijmans et al., 2005); and potential 

evapotranspiration and aridity index from CGIAR-CSI 

database (available from http:// cgiar-csi.org). The 

physiographic variables (aspect, elevation, and slope) were 

procured from the GMTED2010 database 

(https://lta.cr.usgs.gov). The terrain ruggedness index was 

derived from the elevation by subtracting adjacent cells 

from the central cell by using map algebra and spatial 

analyst tool. Eight edaphic variables were obtained from 

HWSD site (Fischer et al., 2008). To improve quality, 

relevance, and dependability of predictions, all 

environmental variables were resampled to the highest 

coarse resolution of 1km (0.0083333 degrees). The 

variables were projected to a common coordinate system 

of 44 °N UTM zone of World Geodesic System (WGS'84) 

datum. Organisation and pre-processing of environmental 

data layers were done using ArcGIS 10. The environmental 

variables were tested for multicollinearity to check model 

over-fitting. Using hierarchal clustering analysis of R's 

‘corrplot' package (Wei and Simko, 2016), we selected one 

variable from each cluster. The variables with high 

principal component (PC) loadings of 1st two axes were 

nominated for modelling, subject to correlation <0.8. We 

applied generalised additive model (GAM; Hastie and 

Tibshirani, 1990) that fits nonlinear and complex 

relationships between species and the environment; and 

capable of controlling over-fitting automatically by GCV 

(generalised cross validation) predictive error criteria. We 

used cubic spline smoother and tensor product (‘te’) 

smoother for variables with and without interactions 

respectively. The ‘te’ smoother scales anisotropic variables 

with different units. The Akaike's information criterion 

(AIC) is used for optimal model selection (Akaike 1973). 

The % explained deviance of deviance and residual 

deviance on null deviance was compared. R software 

Version 3.2.2 was used for all statistical analyses (R Core 

Team). 
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Figure 1. (a) Indian parts of Eastern Himalaya; (b) 

Study area 

Figure 2. Contribution of variables to the 

principal components (PC); % Variance 

explained to PC axis are in parenthes.  

Abbreviations: AI= Aridity index; CEC=Cation 

exchange capacity; PDR=Precipitation of the 

driest quarter; PET=Potential evapotranspiration; 

pH = Negative logarithm of Hydrogen ion 

concentration; SLP=Slope; TRI=Terrain 

ruggedness index; TS=Temperature seasonality 
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Figure 3. Correlation Plot; Bigger size of circle 

represents higher correlation and vice versa.  
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Table 1. Regression statistics using generalised additive model showing % deviance explained by each variable 

combination; M0 represents the intercept model. 

 

Abbr. Models 

% Dev. 

Explained AIC 

M0  SR~1 — 3663.4 

M1  SR~s(SLP) 8.9 3513.5 

M2  SR~s(TRI) 8.4 3521.2 

M3  SR~s(CEC) 18.6 3333.9 

M4  SR~s(pH) 15.7 3386.1 

M5  SR~s(AI) 19.3 3318.6 

M6  SR~s(PDR) 17.3 3357.1 

M7  SR~s(PET) 11.3 3465.4 

M8  SR~s(TS) 15.3 3394.6 

M9  SR~s(SLP)+s(TRI) 11.5 3474.1 

M10 SR~s(SLP)+s(TRI)+te(SLP,TRI) 13.9 3460.0 

M11 SR~s(CEC)+s(pH) 21.5 3286.4 

M12 SR~s(AI)+s(PDR) 25.6 3216.6 

M13 SR~s(AI)+s(PDR)+te(AI,PDR) 33.6 3104.2 

M14 SR~s(TS)+s(PET) 19.8 3324.1 

M15 SR~s(TS)+s(PET)+te(TS,PET) 34.6 3091.6 

M16 SR~s(SLP)+s(TRI)+s(CEC)+s(pH) 26.8 3206.4 

M17 SR~s(SLP)+s(TRI)+s(AI)+s(PDR) 32.2 3115.9 

M18 SR~s(SLP)+s(TRI)+s(TS)+s(PET) 27.8 3196.6 

M19 SR~s(pH)+s(CEC)+s(AI)+s(PDR) 32.3 3111.1 

M20 SR~s(pH)+s(CEC)+s(TS)+s(PET) 29.8 3158.0 

M21 SR~s(AI)+s(PDR)+s(TS)+s(PET) 33.4 3100.7 

M22 SR~s(SLP)+s(TRI)+s(pH)+s(CEC)+s(AI)+s(PDR) 36.6 3053.0 

M23 SR~s(SLP)+s(TRI)+s(pH)+s(CEC)+s(TS)+s(PET) 33.1 3115.9 

M24 SR~s(SLP)+s(TRI)+s(AI)+s(PDR)+s(TS)+s(PET) 38.5 3023.5 

M25 SR~s(pH)+s(CEC)+s(AI)+s(PDR)+s(TS)+s(PET) 39.4 3010.8 

M26 SR~s(SLP)+s(TRI)+te(SLP,TRI)+s(AI)+s(PDR)+te(AI,PDR) 42.7 2975.4 

M27 SR~s(SLP)+s(TRI)+te(SLP,TRI)+s(TS)+s(PET)+te(PET,TS) 45.1 2937.4 

M28 SR~s(CEC)+s(pH)+s(AI)+s(PDR)+te(AI,PDR) 40.6 3002.2 

M29 SR~s(CEC)+s(pH)+s(TS)+s(PET)+te(PET,TS) 39.6 3014.8 

M30 SR~s(AI)+s(PDR)+te(AI,PDR)+s(TS)+s(PET)+te(PET,TS) 48 2887.3 

M31 SR~s(SLP)+s(TRI)+te(SLP,TRI)+s(CEC)+s(pH)+s(AI)+s(PDR)+te(AI,PDR) 47.3 2914.9 

M32 SR~s(SLP)+s(TRI)+te(SLP,TRI)+s(CEC)+s(pH)+s(PET)+s(TS)+te(PET,TS) 47.8 2909.1 

M33 SR~s(SLP)+s(TRI)+te(SLP,TRI)+s(AI)+s(PDR)+te(AI,PDR)      

+s(PET)+s(TS)+te(PET,TS) 

53.7 2801.5 

M34 SR~s(CEC)+s(pH)+s(AI)+s(PDR)+te(AI,PDR)+s(TS)+s(PET)  +te(PET,TS) 52.4 2836.1 

M35 SR~s(SLP)+s(TRI)+te(SLP,TRI)+s(CEC)+s(pH)+s(AI)+s(PDR)+te(AI,PDR)+P

DR)+s(TS)+s(PET)+te(PET,TS) 

58 2765.1 
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Results 

A floral dataset of 8768 records with 41779 individuals 

with 1470 species from 376 GPS locations includes 556 

trees, 255 shrubs, 496 herbs, and 163 lianas were selected 

for the present study. We compared PC loadings of 

variables where the 1st two PC axes explained the variance 

of 54.8 % and 17.4 % respectively (Figure 1). Eight 

variables: aridity index, cation exchange capacity, 

precipitation of the driest quarter, negative logarithm of 

hydrogen ion concentration, potential evapotranspiration, 

slope, terrain ruggedness index and temperature 

seasonality with <0.8 correlation coefficient were modelled 

(Figure 2). We modelled 36 variable combinations where 

AIC of the null model was 3663.4.With the inclusion of 

variables, AIC reduced, but with high % explained 

deviance. Individually, the physiographic variables 

explained the least deviance (8.4±0.5). However, the 

explanatory ability of edaphic variables was significant 

where cation exchange capacity and pH described 18.6 % 

and 15.7 % respectively. The maximum deviance was 

described by aridity (19.3 %). Precipitation of the driest 

quarter explained 17.3 % deviance. Potential 

evapotranspiration and temperature seasonality explained 

11.3 % and 15.3 % deviance respectively. Bivariate 

regression between slope and terrain ruggedness index 

increased the explanatory ability to11.5 % deviance, and 

further to 13.9 % with the inclusion of their interactive 

terms. Similarly, the collective effect of edaphic variables 

improved to an explained deviance of 21.5 %, significantly 

higher than physiography explained. Climate was highly 

significant with/without their interactive terms. Water 

(aridity and precipitation of the driest quarter) described 

25.6 % deviance without interactions, improved to 33.6 % 

explained deviance with interactions. However, energy 

(potential evapotranspiration and temperature seasonality) 

improved their predictive ability from 19.8 % explained 

deviance without interactions to 34.6 % with interactions, 

the maximum increase with the inclusion of interaction 

term. The physiography and edaphic variables combined 

explain 26.8 % deviance, the lowest by any two groups of 

predictors. The predictability further improved with the 

inclusion of water/energy variables with/without 

interactions. However, the cumulative impact of 

physiography/edaphic with water was higher than their 

impacts with energy.  The cumulative effect of both water 

and energy variables were found to have superior control 

on predictability with an explained deviance of 33.4 % 

without interactions to 48 % with interactions. The 

tripartite combination of variables showed some 

improvement in the explanatory ability of models, but 

climatic (water and energy) predictors influenced 

dominantly. The full model with a combination of all 

variables described the maximum up to 58 % deviance, 

and the same model was with the least AIC value of 

2765.1.  

3. Discussion 

About 43 % of the families were represented with either 

singletons or doubletons, explains the presence of a high 

number of rare species in the region. The findings 

corroborate with the earlier studies (Chatterjee, 1939; 

Behera et al., 2002; Roy and Behera, 2005) who advocated 

high endemism in the Eastern Himalaya. The high elevated 

terrain creates isolated patches of distinct habitats that 

might have promoted endemicity with more singleton or 

doubleton species. With greater terrain complexity, the 

northern part may have created many isolated patches and 

habitats that favour endemism. The positive effect of 

physiography on species' niche differentiation has also 

been reported by Whittaker et al. (1973). The lianas, 

shrubs and trees represented ca. >66 % of the species pool, 

demonstrates the dominance of woody species in the study 

site. A good number of lianas (163) may be associated with 

the greater tree density (526). The high annual 

precipitation (2196 mm) and annual temperature (16.9 °C) 

might have favoured liana richness. Its geophysical 

position along subtropical latitude attributes to high solar 

radiation and the minimum variation in day length (Zobel 

and Singh, 1997) could have played a significant role in 

seed germination of plants.Both edaphic variables showed 

better significance than physiography and approves the 

findings of Moser et al. (2005) that edaphic factors are 

more closely associated with SR than physiography in 

Austrian Alps. The moderately acidic soil (PH=4.6) was a 

significant factor on SR corroborate with the findings of 

Vetaas (1997) who reported that vascular plant richness of 

Himalaya has a positive correlation with pH. The spatial 

distribution of clay and silt in soil and its organic carbon 

was indicative of better nutrient availability. However, the 

low calcium content of soil describes water- and nutrient- 

holding capacity is not fair. It explains the dominance of 

trees because they exploit underground water efficiently. 

The study revealed the primacy of climate in SR pattern. 

Individually, aridity and precipitation of the driest quarter 

have the maximum control. It explains significant effect 

dryness on SR pattern. However, the south-eastern region 

of the study site receives high precipitation is less likely to 

get affected by dryness. Alternately, temperature 

seasonality showed greater influence and variability in 

northern parts than southern parts. It describes SR of 

northern part is likely to be affected by temperature 

fluctuations setting an overall stress condition. With 

greater terrain complexity, the northern part might have 

created many isolated patches and habitats that favour 

endemism. The warmer south with low physiographic 

complexity, but with high-temperature fluctuations could 

have supported more species.The explanatory power of 

each combination substantially increased with interactions. 

It indicates the contribution of variables on SR is not 

mutually exclusive. The interactions between 

physiographic variables showed insignificant 

improvements in explanatory ability with interactions. It 

explained their independent influence on SR pattern. 

Alternately, climatic variables with interactions showed 

high synergy in expression. Even though water variables 

shoed greater impact on SR, the interactions between 

energy variables were more prominent. The dependability 

of energy variables might explain their collective influence 

of energy factors on SR. The overall moist climate might 

have created a situation for energy predictors to facilitate 

seed germination in the northern part with cold climate. In 

general, climate defined the maximum deviance by any 

particular correlate type is most significant on SR pattern. 

Our findings corroborate with many ecologists who agree 

that climate is a crucial factor at regional scales (Ricklefs, 

1987; Francis & Currie, 2003). However, climate 

controlled by water and temperature (energy) critically 
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impact SR (Curie & Paquin, 1987); and specifically, water-

energy dynamics have a major contribution to species 

distribution (O`Brien, 1993). Both water and energy 

variables were found superior predictors. Their impacts on 

the physiographic and edaphic variables improved 

performance significantly. It explains the influence of 

climate, physiography, and the geologic substrate on 

evapotranspiration, soil development, and moisture regime 

and thus, species distribution (Franklin, 1995). The 

inclusion of interactive terms shows that no single factor 

acts in isolation and the full model described the maximum 

deviance showing the synergy between predictors. The 

dominant woody species population set higher climatic 

responses on SR pattern. The subtropical position, 

geophysical complexity, soil with climate played a critical 

role. The northern part is more likely to suffer from 

temperature fluctuations and most probably by climate 

change. The present study highlights the relevance of 

climate, water-energy dynamics and heterogeneity 

hypotheses and improves our understandings of species-

environment relationships that might explain the critical 

influence of climate change on distribution. 
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