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Abstract.  

Sustainable groundwater management requires an 

operational in situ monitoring network. Concerning 

groundwater quantity, the EU Water Framework Directive 

(WFD) requires groundwater level and abstraction 

monitoring so as to ensure that changes in groundwater 

storage do not exceed the natural replenishment of the 

groundwater system. However, there are cases, e.g. 

Greece, where WFD monitoring program has not yet 

become fully operational due to various constraints which 

are more evident during the recent economic crisis. Over 

the last few decades, satellites have provided useful 

information to hydrologists, not only concerning surface 

water resources but also concerning groundwater 

conditions. The present study aims at quantifying 

groundwater use at the aquifer scale by using Gravity 

Recovery and Climate Experiment (GRACE) satellite data 

in combination with available meteorological data of the 

study area. To achieve this goal, gridded GRACE Total 

Water Storage data were statistically downscaled using an 

Artificial Neural Network (ANN). The methodology was 

applied in an aquifer in Thrace region (NE Greece) during 

the time period 2005 - 2014. Results showed that monthly 

quantity of water extracted from a certain aquifer can be 

efficiently estimated offering an inexpensive alternative 

when in situ observations are not available.  
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1. Introduction 

It is widely accepted that groundwater constitutes a 

resilient source of drinking and irrigation water in many 

parts of the world. Recent studies have shown that the 

global groundwater abstraction rate has doubled during the 

last five decades and that groundwater depletion is a major 

threat for many aquifers all over the world (Wada et al., 

2010).  Climate changes are expected to pose additional 

stress to groundwater resources especially in areas defined 

as "Hot Spots" regarding their vulnerability or their climate 

response to climate changes, like the Mediterranean 

countries (Giorgi, 2006). In order to protect groundwater 

systems around Europe, EU has set up several 

requirements from Member States, as described in the 

Water Framework Directive (WFD) (European Union, 

2000)  and the daughter Groundwater Directive (European 

Union, 2006). Concerning the quantitative status of 

groundwater resources EU Member States should have 

established by the end of 2006 an operational monitoring 

network so as to ensure a balance between abstraction and 

recharge of groundwater. In cases where this balance is 

disrupted, Member States should have taken all necessary 

measures to restore the affected groundwater systems at 

least by the end of 2015. Decisions regarding the state of a 

groundwater system traditionally rely on in situ 

observation networks which however demonstrated a 

decline of coverage in recent years (Sun, 2013), resulting 

in loss of precious information for many aquifers. It should 

be also admitted that establishing and maintaining a fully 

operational groundwater monitoring network is both cost 

and effort demanding, especially during the period of 

recent economic crisis. A typical example is that of 

Greece, which is behind due dates concerning the 

establishment of an operational groundwater monitoring 

network. The lack of monitoring data in combination with 

the complex administrative system and the sharing of 

responsibilities to many authorities resulted in serious 

delays regarding the submission of the required by the 

WFD River Basin Management Plans and the 

implementation of measures to restore water resources 

(European Commission, 2015). While in situ observations 

offer valuable information,  the role of remote sensing in 

offering the required hydrological information is more and 

more appreciated, especially in poorly gauged areas where 

there is no monitoring network or monitoring provides 

only sparse data (Lakshmi, 2004). It has been shown that it 

is possible to overcome data availability restrictions in 

various hydrologic applications using remotely sensed data 

(Fang and Lakshmi, 2014; Gemitzi et al., 2017; Lakshmi, 

2016; Richey et al., 2015; Sun, 2013). Concerning the 

quantity of groundwater resources, it is not possible to 

measure groundwater storage changes by any of the 

current remote sensing technologies (Brunner et al., 2007). 

During the last decade the  Gravity Recovery and Climate 

Experiment (GRACE) (Tapley et al., 2004) has been a 

focus point for many hydrologists, as it provides 

measurements of the changes in Total Water Storage 

(TWS). Although GRACE cannot provide measurements 

of the individual hydrologic components, various methods 

for isolating the TWS components from GRACE signal 

using supplementary data sets, either as modeled values or 
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as in situ observations, are developed (Richey et al., 2015; 

Sun, 2013; Zaitchik et al., 2008). It has also been shown 

that GRACE changes in TWS, i.e. ΔTWS may serve as 

predictor for changes in water level, which is especially 

useful when the monitoring network cannot provide 

continuous in situ observations (Sun, 2013). The objective 

of this study is to develop a statistical downscaling  model 

for GRACE ΔTWS that will be used along with 

meteorological data in order to predict the abstracted water 

quantities form a certain aquifer. Performance of the model 

was assessed in an aquifer in Thrace (NE Greece). It is 

expected that the developed model will be very useful in 

case where monitoring network fails to provide water level 

and abstracted quantities and will help towards 

highlighting overexploited aquifers. 

2. Data and Methods 

2.1. GRACE data 

GRACE is a joint mission between the National 

Aeronautics and Space Administration (NASA) in the 

United States and Deutsche Forschungsanstalt für Luft und 

Raumfahrt (DLR) in Germany. It launched in March 2002, 

and its purpose is to map Earth's gravity field. It was found 

that after removing the ocean and atmosphere effects, 

GRACE signal approximates changes in terrestrial water 

storage (ΔTWS) (Tapley et al., 2004). Thus, converting 

observed gravity anomalies into changes of equivalent 

water height, GRACE data provide measurements of 

monthly changes in total terrestrial water storage. In this 

work we acquired Version 5.0 for the Level 2 GRACE data 

in the form of monthly Total Water Storage (TWS) 

anomalies from 2005 to 2014, from the CU GRACE data 

portal (http://geoid.colorado.edu/grace/index.html) 

developed by the University of Colorado. The data set 

comprised of gridded GRACE TWS anomalies with spatial 

resolution of 100 km, scaled applying gridded gain factors 

according to the methodology described in Landerer and 

Swenson (2012). 

2.2. In situ observations - Description of the study area 

In order to develop and verify our model for nowcasting 

and forecasting of groundwater abstraction quantities, data 

from Neon Sidirohorion aquifer in Rhodope area (Thrace, 

NE Greece) were used (Figure 1). The study aquifer is an 

alluvial one covering an area of 35km
2
, with thickness 

ranging from 50 - 100m. Cotton and corn are the main 

cultivations of the region. Groundwater abstractions are 

taking place during summer (June to August) for irrigation 

purposes causing groundwater level drawdown (Gemitzi 

and Stefanopoulos, 2011). The following data were used 

along with GRACE observations from 2005 - 2014 (Table 

1): 

a) Monthly meteorological data in the form of monthly 

precipitation and mean monthly temperature acquired from 

Komotini meteorological station, nearby the study aquifer. 

b) Abstraction quantities were determined using the total 

power consumption for irrigation in the study aquifer 

(Gemitzi and Stefanopoulos, 2011), based on the equation 

provided by Faour (2001): 

   
     

       
          

where P is the total power required (kW), Q is the flow rate 

(l/s), H is total pumping head (m), n is the combined effect 

of pumping efficiency and derating, and 102 is a 

conversion factor. Derating accounts for efficiency losses 

between the energy required at the pump shaft and the total 

energy required. Approximate derating factor for electric 

motors is 80% and for diesel motors is 75%, (Faour, 2001). 

Power consumption was provided by the Public Power 

Corporation in the form of total electric power consumed 

in the study area per month. Pumping head in Equation (1) 

was taken to be the mean of monthly groundwater head in 

eight monitoring points in the study aquifer.  

 

Figure 1.  Location map of the study area 

2.3. ANN model 

ANNs have been widely used in groundwater modeling 

and forecasting, especially for groundwater level 

predictions (Chu and Chang, 2009; Coppola et al., 2007; 

Coulibaly et al., 2001; Sun, 2013). In our work we 

developed a Multi Layer Perceptron (MLP) ANN that 

estimates groundwater quantity abstracted from an aquifer 

using as input variables mean monthly temperature, mean 

monthly precipitation, GRACE ΔTWS and monthly 

abstraction quantity of the same month one year before. 

Since the abstraction time series demonstrates strong 

seasonality (Gemitzi and Stefanopoulos, 2011), use of 

abstraction in the previous year as predictor variable is 

unavoidable. Given a set of predictor variables x, an ANN 

evaluates the target variable: 

                                                                 

where f is a complex non-linear mathematical function that 

converts input data to a desired output and ε is the noise in 

the process. Each MLP network consists of the input layer, 

one or more hidden layers and the output layer. To keep 

the structure as simple as possible we used a single hidden 

layer network. Each layer has one or more neurons. Given 

a set of M predictors        
   the hidden layer has K hidden 

neurons each one computed as a weighted sum of 

predictors (Sun, 2013): 

    ∑   
   

 

   

      
   

                      

where    is a neuron in the hidden layer,     
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unknown weights associated with each one of the input  
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Table 1. Basic statistics of the parameters used 

Parameter Minimum value Mean value  Maximum value Standard 

deviation 

Mean monthly precipitation (mm) 0.0 51.3  241.0 52.2 

Mean monthly temperature (
o
C) 2.2 15.5  29 7.5 

GRACE ΔTWS (mm / month) -107.3 20.6  152.7 57.2 

Groundwater abstractions  

(m
3
 x 10

6
/month)

*
 

1.2 2.1  3.4 0.58 

* Statistics for groundwater abstraction correspond to summer period only
 

neurons, and    
   

is the unknown bias term, superscripts 

denote the layer number. To provide output (     from 

hidden neurons, a transfer function         in applied to 

ak:                                                       

A linear transfer function passes the signal from hidden 

neurons to the output layer: 

    ∑   
   

      
   

                                    

 

   

 

in which    is the output neuron,     
   

  are the unknown 

weights and    
   

the bias term. In this study the number of 

output neurons is one. The development of an ANN model 

requires two phases, i.e. the training and the testing phase, 

each one applied to a different portion of the data set. In 

the present work half of the data set is used for training 

(2005 - 2009) and the rest half (2010 - 2014) for testing. In 

the training phase, fitting errors are passed backward to the 

network so as to obtain weights in each layer that provide 

best fit to observations. This process is known as 

backpropagation. Performance of the model is assessed in 

the testing phase by two criteria, i.e. the scaled Root Mean 

Square Error (RMSE) denoted as R* = RMSE /standard 

deviation of observations,  and  the Nash-Sutcliff 

efficiency (NSE) (Nash and Sutcliffe, 1970), ranging - ∞ to 

1. A model is considered to have very good performance if 

the resulting NSE is greater than 0.75 and R* is less than 

0.50 (Sun, 2013). In order to generalize the model, an 

ensemble of 100 ANNs was developed applying the initial 

weight randomization method (Sun, 2013). The Neuralnet 

tool (Fritsch et al., 2016) of the open source software R 

was used to develop the ensemble of MLP ANNs in this 

study. 

3. Results and discussion 

Figure 2 shows the MLP ANN developed, the neurons in 

each layer, together with neuron weights (in black) and 

bias terms (in blue). The observed and modelled time 

series of groundwater abstractions from 2005 to 2014 are 

shown on Figure 3. Training period corresponds to 2005 - 

2009 and  testing was performed from 2010 to 2014. 

Modelled values correspond to means of the ensemble of 

the 100 ANN models. Performance of the model was 

assessed in testing period and was found to be very good, 

with NSE = 0.95 and R* = 0.23. Our results thus, support 

the initial assumption that GRACE ΔTWS can be 

downscaled using in situ meteorological data which is in 

agreement with findings from previous works (Sun, 2013). 

 

 

Figure 2. The structure and weights of the ANN. Black lines and numbers correspond to synapse weights. Blue lines and numbers 

correspond to bias terms. Precip = mean monthly precipitation, Temp = mean monthly temperature, GRACE = monthly ΔΤWS and 

AbstrPrev = monthly groundwater abstractions during the same month of the previous year, Abstr = groundwater abstractions in the 

current month. 
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Figure 3. Modelled and observed time series of groundwater abstractions in Neon Sidirohorion aquifer (Thrace, Greece).  Black dashed 

line separates training (2005 - 2009) and testing (2010 - 2014) phases 

Additionally, it was shown that GRACE signal can be used 

as a predictor variable for groundwater abstractions, when 

a monitoring network has failed to provide required 

abstracted quantities. Water managers are interested in 

such information as it helps identifying aquifers being at 

risk of quantitative stress and enforce measures to ensure 

balance between abstractions and recharge and restore the 

groundwater system 

4. Conclusions 

In the present work an ANN model has been developed to 

estimate groundwater abstractions from an aquifer, using 

as input variables  meteorological data and GRACE 

remotely sensed data. Results showed that gridded 

GRACE ΔTWS can be downscaled and used for estimating 

abstracted quantities of groundwater. As the whole process 

requires only easily available meteorological data and 

remotely sensed GRACE data, it is a reasonable and low 

cost alternative when the monitoring network fails to 

provide such information. Although training and testing of 

an ANN might be time consuming and requires 

computational skills, it is thereafter a readily available tool 

for use by water managers. The methodology  is especially 

useful for areas like Greece, where groundwater represents 

approximately 42% of the total water demand and other 

analogous cases where groundwater constitutes a major 

source of water. 
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