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Abstract In order to prepare cities for pluvial flooding, it 

is valuable to be able to simulate extreme events produced 

by high-intensive rainfall with accuracy. In the present 

paper, the Storm Water Management Model (SWMM) was 

chosen for the simulation of a combined drainage network 

located in the center of Athens (Kypseli), Greece. 

Metaheuristic optimization algorithm (i.e., Genetic 

Algorithm) was utilized to calibrate the model. The Nash-

Sutcliffe coefficient was used as the objective function and 

the simulation results were further assessed using the Root 

Mean Squared Error (RMSE) coefficient, the Mean 

Absolute Error, the Coefficient of Determination, the Index 

of Agreement, the Normalized Objective Function and the 

total runoff volume. The communication between the 

optimization algorithm and the SWMM model was 

performed using the Matlab computing environment. The 

calibration and validation results showed that the SWMM 

model could simulate quite accurately the shape of the 

hydrograph, the peak discharge and the time of peak in the 

combined drainage network, both for the calibration and 

validation events. Overall SWMM model was found to be 

a very useful modelling tool, which can be used for the 

simulation of urban drainage networks. 

Keywords: SWMM, calibration, validation, Genetic 

Algorithms, urban drainage  

1. Introduction 

According to the United Nations (2010), more than the half 

of the world population lives in urban and semi-urban 

areas. The increasing frequency of urbanization and the 

constant increase of impervious areas in cities has as a 

consequence extreme flooding events (Bellos and Tsakiris 

2015), with increase in mortalities and economical losses. 

Kron et al. (2012) reported damages of 5-35 billion US$ 

per year in Europe for the period 1980-2010, because of 

extreme weather events. During the last century, the city of 

Athens has experienced a major number of inundation 

incidents and casualties (Pistrika et al., 2014; Bathrellos et 

al. 2016). In order to be able to cope with those types of 

extreme events, advanced computer models are a solution 

as they can facilitate the stakeholders in developing the 

appropriate management strategies and mitigation 

measures (Barco et al. 2008). However, the availability of 

the appropriate data is limited, especially for urban areas, 

and as a consequence the model parameterization is 

impeded; therefore, there is need for calibration and 

validation (Muleta et al. 2012). 

Nowadays, various models are available to simulate and 

manage urban runoff, including Storm Water Management 

Model (SWMM) (Rossman 2010), MOUSE (DHI 2002) 

etc. Calibration, verification and validation, sensitivity 

analysis, uncertainty analysis, optimal design of sewer 

networks and parameterization of EPA SWMM model has 

been addressed by many researchers (e.g., Selvalingam 

1987; Tsihrintzis and Hamid 1998; Choi and Ball 2002; 

Afshar et al. 2006; Barco et al. 2008; Muleta et al. 2012; 

Krebs et al. 2013; Huang et al. 2015; Del-Guidice and 

Padulano 2016).  

In the present work, we tested the applicability and the 

effectiveness of a method for model calibration and 

validation in urban runoff quantity modeling. Moreover, a 

set of parameters is provided that can be used, as a starting 

point, in modelling the combined sewer network of 

Athens. SWMM5 model was used for the hydrologic-

hydraulic modelling of the combined sewer system of two 

zones in Athens. Metaheuristic optimization algorithm 

(i.e., Genetic Algorithm) was utilized for the calibration of 

the model.  

2. Materials and Methods 

2.1. Case Study Area 

The combined sewer system of Athens is the oldest part of 

the drainage network and covers a total area of 13.1 km
2
. 

The subcatchments examined, herein, were Z1 and Z2 

(Fig. 1). Both catchments are drained by a combined sewer 

system. The total drainage area of the study site is 

approximately 2.45 km
2
. Approximately, 90% of the 

model area is developed. The examined drainage network 

consists of 457 nodes and 460 combined sewer conduits  
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Figure 1: Aerial view of the study area (Google earth) 

with a total length of about 20 km. The drainage system 

comprises egg-shaped conduits with depths ranging from 

0.9 m to 2.5 m, circular conduits with diameters ranging 

from 0.25 m to 2.3 m, rectangular conduits with depths 

ranging from 1.05 m to 3.0 m, and semi-elliptical conduits 

with depths of 2.4 m. Figure 1 presents the subcatchments 

of the combined sewer network of Athens and the 

boundary of the study area. Rainfall is measured by one 

tipping-bucket rain gauge (Fig. 1) which was installed 

within the catchment, while flow data were collected using 

automated gauges in three sewers of the combined 

drainage network (Fig. 1) (Antonaropoulos and Associates 

2006). 

2.2 SWMM Model 

The catchments are modeled using SWMM5, a fully 

distributed deterministic model (Butler and Davies 2004; 

Rossman 2010). SWMM is a fully dynamic rainfall-runoff 

model, which can be used both for single-event or 

continuous simulation of runoff quantity and quality, and is 

primarily used in urban areas (e.g., Selvalingam et al. 

1987; Tsihrintzis and Hamid 1998; Hsu et al. 2000). 

Subcatchment information such as area and slope were 

extracted from the Digital Elevation Model (DEM) using 

ArcGIS, while typical values from the literature were taken 

for Manning for pervious and impervious areas, for 

depression storage for pervious and impervious areas and 

for Manning’s coefficient for sewers (Chow 1959; ASCE 

1992; Rossman 2010). The model parameters and their 

variation ranges are shown in Table 1. The parameters of 

SWMM5 considered for calibration were: (i) percent 

impervious of each subcatchment; and (ii) width of each 

subcatchment. The study site was classified into 4 

impervious classes, i.e., 0-20 %, 20-40 %, 40-70 % and 

>70 %, according to the land uses (Corine 2006). 

Moreover, in order to be able to alter the width parameter, 

the average maximum length of each subcatchment was 

chosen to be altered, according to the equation (Rossman 

2010):   

A
W

L
   (1) 

where: A is the area of each subcatchment (m
2
) and L is 

the average maximum length of each subcatchment (m). 

Lower and upper percentage adjustment bounds were 

assigned based on literature and engineering judgment 

(Chow 1959; Tsihrintzis and Hamid 1998; Barco et al. 

2008; Rossman 2010). 

2.3 Optimization Algorithm and Objective Function 

For the calibration procedure the communication between 

the optimization algorithm and the SWMM model took 

place using the Matlab computing environment (Goldberg 

1989). 

The flow measured in three conduits of the combined 

sewer system was used for calibration and validation. The 

Nash-Sutcliffe coefficient (E), (Eq. 2), was used as the 

objective function for the calibration. NSE is defined as 

one minus the sum of the absolute squared differences 

between the observed and the simulated values, normalized 

by the variance of the observed values (Nash and Sutcliffe 

1970). The results were further assessed using additional 

efficiency criteria including Root Mean Squared Error 

(RMSE) (Eq. 3), the Mean Absolute Error (MAE) (Eq. 4), 

Coefficient of Determination (r
2
) (Eq. 5), Index of 

Agreement (d) (Eq. 6), the Normalized Objective Function 

(NOF) (Eq. 7) and total volume of runoff (Nash and 

Sutcliffe 1970; Krause et al. 2005; Muleta et al. 2012). 
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where: Oi= observed runoff at time i; Si= model simulated 

output at time i; O = mean of the observations; S = mean 

of the simulations; and n= number of observations. 

3. Results and Discussion 

3.1 Calibration and Validation 

The objective of the calibration was the simulated 

hydrograph to match as much as possible the runoff 

volume, the peak discharge, the time of peak and the rising 

and falling limbs of the observed hydrographs. Results are 

summarized in Fig. 2 and Table 1. Table 2 presents the 

efficiency indices used for assessing calibration and 

validation results. For conduit 1640 (Fig. 2a) the shape of 

the predicted hydrograph matches well the measured one; 

however, the volume is under-predicted and peak 

discharge is slightly over-predicted. In case where there 

were more measurements in the conduit, calibration would 

have given better results for conduit 1640. Fig. 2b 

compares the measured and predicted hydrographs for 

conduit 1313. The simulated peak, the time of peak, the 

simulated volume and the shape of the predicted 

hydrograph match very well the observed ones. Fig. 2c 

compares the predicted and the measured hydrographs for 

conduit 1344. The time to peak of the predicted 

hydrograph is the same with the observed one and the 

simulated peak is slightly over-predicted. However, the 

shape of the predicted hydrograph matches the measured 

one quite well. The simulated runoff volume is under-

predicted compared to the observed one. Finally, Figure 3 

presents the validation results. The validation took place 

only for conduit 1344, as there were no flow measurements 

for the other two conduits. The shape of the predicted 

hydrograph matches the measured one well. On the other 

hand, peak discharge is slightly over-estimated and the 

runoff volume as well. The time to peak of the predicted 

hydrograph matches the measured one. Generally, 

prediction is good considering a single-event hydrograph. 

Depending on the data availability and on the study 

objectives, selection of SWMM parameters for calibration 

can differ (Tsihrintzis and Hamid 1998). Barco et al. 

(2008) has evaluated the sensitivity of SWMM calibration 

parameters, and the result revealed that the parameters 

conduit Manning coefficient, percent of impervious area, 

storage depth of impervious area and subcatchment width 

have an obvious impact on simulation result, and the other 

parameters have relatively minor effect. Muleta et al. 

(2012) in their study used 11 SWMM5 parameters for 

calibration and uncertainty analysis, and concluded that 

percent impervious, depression storage for impervious 

areas and percent of impervious area with no depression 

storage had a substantial effect. In the present study, 

percent impervious and width of each subcatchment were 

used for calibration and validation. The results (Fig. 2 and 

3 and Tables 1 and 2) suggest that the values that emerged 

in the calibration were reasonable and within the expected 

range. 
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Table 1: Parameter values 

Fixed Parameters  Calibration Parameters 

No. Parameter Range  No. Parameter Range 

1 N-Imperv (s/m1/3) 0.015 

 1 % Impervious 14~92 2 N-Perv (s/m1/3) 0.20 

3 Dstore-Imperv (mm) 2.54 

4 Dstore-Perv (mm) 6.51 

 2 Width (m) 130-3211 
5 Slope-sub (%) 0.01~0.2 

6 CN 40~94 

7 Manning-conduits (s/m1/3) 0.012~0.017 

 

 

Figure 2: Comparison of measured and predicted hydrographs from calibration runs 
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Figure 3: Comparison of measured and predicted hydrographs from validation run 

Table 2: Efficiency criteria results 

Conduits/Resul
ts 

Calibration Validation 

 RMSE E MAE r2 d NOF % Vol. RMSE E MAE r2 d NOF % Vol. 

1640 0.0062 0.3547 0.0573 0.6474 0.8495 0.0450 -35.10 - - - - - - - 

1313 0.0238 0.9328 0.0164 0.9361 0.9834 0.3285 +1.72 - - - - - - - 

1344 0.1656 0.8554 0.0863 0.8578 0.9579 0.4327 -2.63 0.2166 0.9339 0.1025 0.9666 0.9855 0.4173 +13.91 
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4. Conclusions 

The aim was to test the applicability of USEPA SWMM5 

model in Athens, Greece, and moreover, to provide a 

methodology and a set of parameters that can be used in 

modelling the combined drainage network of Athens. 

Calibrated rainfall-runoff models, for specific regions, are 

much needed to evaluate impacts of urbanisation, climate 

change etc., and to be used for improvement of drainage 

systems.  In the present study, in order to reduce the 

complexity of the calibration process, only two parameters 

of SWMM5 model were chosen for calibration, percent 

impervious and width of subcatchments. Two storm events 

were used for calibration and validation. The outcomes of 

the models suggest that SWMM is able to predict quite 

well the observed flows. 
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