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Abstract.  

Climate projections are associated with uncertainties both 

on the global and the regional scale, which are related to the 

different configurations of the modeling chain. Although a 

combination of numerous projections is usually needed to 

quantify the total uncertainty, practical impact modeling 

investigations can only handle a limited number of scenario 

combinations. Given the fact that all climate projections are 

subject to considerable uncertainty, it is crucial to know a 

representative, with regard to the information content, 

subset in an available ensemble. Here we propose a 

framework rooted in the concepts of information theory to 

identify a representative subset from a larger ensemble of 

climate projections. The Maximum Information Minimum 

Redundancy (MIMR) concept is used to identify the 

representative subset. The analysis is based on an ensemble 

of 16 climate projections for precipitation and temperature 

for the entire Sweden. The projections were further used to 

force the HBV hydrological model and simulate river 

discharge until the end of the 21st century. We identify the 

representative subsets for different statistical characteristics 

for precipitation, temperature and discharge and assess the 

sensitivity of the identification at different regions, seasons 

and future periods. Results show that a subset of 20-35% of 

the total available projections can represent a large fraction 

of the ensemble range of hydro-climatic changes 

highlighting the information redundancy in large model 

ensembles. Finally, the identified subsets are sensitive to the 

choice of variables, seasons and future periods, whilst the 

identification should not be solely based on climatic 

variables but rather consider hydrological information as 

well. 
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1. Introduction 

The global climate change phenomenon is expected to have 

a strong impact on water resources at local, regional and 

global scales (Krysanova et al., 2017). Due to the inherent 

uncertainty of climate projections, projecting climate 

impacts on hydrological processes is often prone to 

considerable uncertainties (Pechlivanidis et al., 2017). 

Uncertainty about the future conditions is commonly 

described via a large ensemble of projections. Nevertheless, 

due to practical problems, the designing of impact modeling 

experiments can only make use of a low number of climate 

projections; limited available resources and communication 

of uncertainty between data providers (i.e. modelers) and 

users (i.e. water managers) are couple of the most common 

practical problems. It is hence apparent to derive methods 

and tools for the identification of optimised informative 

subsets of future conditions from a large available set of 

projections (Knutti and Sedláček, 2012). 

Selecting optimized (in terms of information content) 

subsets from a large number of projections is not a 

straightforward task. Ideally, the optimized subset should 

maximize the diversity of modeled changes from the large 

available ensemble, and hence overcome artifacts by using 

a biased subset unable to represent the uncertainty in 

essential climate variables.   

 

Figure 1. a) Sweden and its four climate regions, and b) 

NSE performance for the HBV model. 

2. Study Area and Methods 

The analysis was conducted in Sweden (450,000 km2) 

which can be divided into four regions (Fig. 1) based on 

similarities in climate and morphology (Arheimer and 

Lindström, 2015). Here, we used 16 projections for 

precipitation, temperature and discharge, which differ in 

terms of emission scenarios (3 in total), GCMs (5), and 

RCMs (6) (see Table 1). Precipitation and temperature were 

firstly bias-adjusted applying the DBS method (Yang et al., 

2010) against Sweden’s observation gridded (4x4 km) 
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dataset for the 1981-2010 period. The HBV model 

(Lindström et al., 1997) was used to project discharge for 

the period 1981-2100. The model has a Nash-Sutcliffe 

Efficiency (NSE) greater than 0.70 at all 69 selected 

indicator basins (Fig. 1b). 

In order to identify the optimum subset, we address this 

problem in a multi-objective optimization approach, in 

which redundant information from the subset should be 

minimized whilst its total information should be maximized. 

This concept has been named as Maximum Information 

Minimum Redundancy (MIMR) (Li et al., 2012). 

Here we assess the information content of subsets in 

seasonal and annual scales and for the different variables of 

interest. The relative changes are the differences between 

the same statistics of the early (2036-2065) and mid (2056-

2085) century, and the present period (1981-2010). 

3. Results and Conclusions 

The 16 available projections differ in terms of their 

information content and mutual information when paired, 

yet though a projection being informative for a single 

variable this does not necessarily ensure high information 

content for the other variables. We identified redundant 

information in the large ensemble and therefore, following 

the MIMR approach, we next sorted the hydro-climatic 

projections based on their importance/contribution to the 

total information of the available set. Fig. 2 shows that it is 

not straightforward to select a consistent subset, which is 

optimum for the selected variables, future periods and 

seasons. In particular, 80% of the total information seems to 

always be represented by a different optimum subset, 

highlighting the pre-requirement of a user driven objective 

to guide the selection procedure. 

We next highlight the need to consider hydrological 

information in the selection procedure and not having it 

solely based on climatic variables. The pattern of identified 

projections contributing to a represention of more than 80% 

of the total information from the available set (red dots in 

Fig. 2) differs between precipitation, temperature and 

discharge. 

The MIMR approach resulted in a representative subset 

which includes two emission scenarios, three GCMs and 3 

RCMs, highlighting the general presence of redundant 

information in the setups and structure of the climate 

models. 

Table 1. Climate projections used, with a 50x50 and 25x25 

km spatial resolution for (*) and (**) RCMs respectively.  

 

Figure 2. Ranking of simulations using the MIMR approach (16 being the least important) for different periods of interest, 

variables, seasons, and regions. Note that the projections highlighted with pink color are not available for the mid-century. 
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