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Abstract 

Recent advances in understanding and forecasting of 

climate have led into skillful meteorological predictions, 

which can consequently increase the confidence of 

hydrological prognosis. There is currently a need to 

understand the large European river systems and make 

practical use of seasonal hydrological forecasts. Here, we 

analyze the seasonal predictive skill along Europe’s hydro-

climatic gradient using the pan-European E-HYPE multi-

basin hydrological model. Both model state initialization 

and provision of climatology are based on forcing input 

derived from the WFDEI product. An ensemble of re-

forecast forcing data (daily mean precipitation and 

temperature) from ECMWF System 4 are firstly bias 

corrected using a modified version of the DBS method, 

and further used to drive E-HYPE. The predictive skill of 

streamflow based on ECMWF and climatology for the 

European basins is assessed on monthly timescales. 

Seasonal re-forecasts are evaluated geographically and 

temporally with respect to their accuracy against perfect 

forecasts of streamflow. We analyze the skill across 35408 

subbasins, which represent various climatologies, soil-

types, land uses, altitudes and basin scales within Europe. 

We finally use the Classification and Regression Trees 

analysis to link the gain in the seasonal skill to 

physiographic-hydro-climatic characteristics and 

meteorological skill, in order to suggest possible 

improvements. 

Keywords: Seasonal hydrological forecasting, E-HYPE, 
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1. Introduction 

Seasonal forecasts hold the potential for being of great 

value for a wide range of stakeholders/end-users who are 

affected by the vagaries of the climate and who would 

benefit from understanding and better managing climate-

related risks (Wood and Lettenmaier, 2006). Recent 

advances in our understanding and forecasting of climate 

have resulted in skillful and useful meteorological 

predictions, which can consequently increase the 

confidence of hydrological prognoses, and awareness from 

an end-user perspective. Efforts at the Swedish 

Meteorological and Hydrological Institute complement the 

“deep” knowledge from basin-based modeling using 

process-based multi-basin modeling at the continental 

scale (http://hypeweb.smhi.se), which are capable of 

representing human influences (i.e. irrigation, reservoirs 

etc.). Such models can encompass many river basins, cross 

regional and international boundaries, represent a number 

of different physiographic and climatic zones, and describe 

shifts in streamflow regime due to human-impacts; hence 

advance process understanding by building a numerical 

background for comparative hydrology. This approach 

allows further the identification of regions of similar 

hydrological forecasting skill, whilst it allows a potential 

link of the skill to physiographic-hydro-climatic 

characteristics and meteorological skill, in order to suggest 

possible model improvements. However, understanding 

processes in large systems is challenging. Indeed, physical 

properties (e.g. vegetation and soil type) generally exhibit 

high spatial variability, which results in significant 

differences in system behavior and predictability. As 

expected, this spatial heterogeneity introduces further high 

uncertainty on the categorization of important drivers that 

influence the predictive hydrological skill. In addition, 

large river basins are often strongly influenced by human 

activities (e.g. irrigation, hydropower production, 

groundwater use) for which information is rarely available 

and therefore rarely described in hydrological model 

processes; hence introducing additional uncertainty 

regarding process understanding and description. Although 

such modeling type has limitations, which vary in space, 

here we make the step forward to gain insights in spatial 

patterns of hydrological skill at the large scale, and link 

this to the characteristics of the basin system. 

2. Methods 

2.1 E-HYPE impact model 

The Hydrological Predictions for the Environment, HYPE, 

model is a dynamic, semi-distributed and process-based 

model capable of describing the hydrological processes at 

the basin scale. The model represents processes for snow 

accumulation and melting, evapotranspiration, soil 

moisture, discharge generation, groundwater recharge, and 

routing through rivers and lakes. HYPE simulates the 

water flow paths in soil, whilst the outflow from a lake is 

determined by a rating curve. Irrigation is simulated based 

on crop water demands calculated either with the FAO-56 

crop coefficient method or relative to a reference flooding 

level for submerged crops (e.g. rice). The demands are 

withdrawn from rivers, lakes, reservoirs, and/or 

groundwater within and/or external to the sub-basin where 
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the demands originated. The HYPE model setup for the 

pan European region (8.8 million km
2
) is named E-HYPE. 

The model has a spatial resolution of 35408 sub-basins, i.e. 

in average 215 km
2
 and runs at a daily time step. The 

model requires information on terrain, soil and land use, 

lakes and reservoirs and irrigation as input, which, in this 

application, has been obtained from global sources 

(Hundecha et al., 2016). Forcing data (daily mean 

precipitation and temperature) based on the WFDEI 

product (Weedon et al., 2014) has been used to calibrate E-

HYPE. 

2.2. Forcing data – Seasonal forecasts and bias correction 

The E-HYPE hydrological model needs initial conditions 

(level in surface water, i.e. reservoirs, lakes and wetlands, 

soil moisture, snow depth) that are obtained by driving the 

model using “observations” for a spin-up period. Mean 

daily precipitation and temperature are derived from the 

WFDEI product and drive the hydrological model for the 

period 1979-2010. Re-forecast forcing data (i.e. daily mean 

precipitation and temperature) from ECMWF System 4 (15 

members initialized every month) are also available for the 

period 1981-2010. The re-forecast data were bias corrected 

using a modified version of the Distribution Based Scaling 

(DBS) method (Yang et al., 2010) to account for drifting 

conditioning the bias correction on the lead month. It has 

been adapted from the quantile-mapping method for 

application in seasonal forecasting. Bias-correction is 

conducted on all members of System 4 using WFDEI data 

as reference. After bias correction, the cumulative 

distribution of daily precipitation and temperature values 

closely follows that of the WFDEI data. 

2.3. Skill metrics 

The skill of seasonal hydrological forecasts was analyzed 

in all 35408 locations across Europe. The objective was to 

assess the capacity to forecast the monthly average 

discharge (hence focus mainly on representing the volume 

of water) for different lead times (i.e. 0, 2, and 4 months 

after the initialization) and for all 15 ensemble members. 

The beta metric is used here (Gupta et al., 2009): 

 

        √                   (Equation 1) 

β is the ratio of the monthly mean of the forecasts (the 

output of the model forced by ECMWF) over the monthly 

mean of the “observations” (the output of the model forced 

by WFDEI); the range of values varies between -∞ and 1, 

with 1 being the optimum. 

2.4 Clustering of skill 

To better understand the potential controls of skill and 

identify regions of similarity, we apply classification and 

regression trees (CART). Here, we explored the spatial 

runoff patterns across the entire subcontinent by analyzing 

the skill in all 35408 catchments modeled by the E-HYPE 

model. CART is a recursive-partitioning algorithm that 

classifies the space defined by the input 

variables/descriptors (i.e. physiographic-hydrologic-

climatic characteristics, and remaining climatic biases) 

based on the output variable (i.e. beta skill for lead month 

2 and month March). In this case, beta is divided into five 

groups – bad (beta < 0.2), poor (0.2 < beta < 0.4), medium 

(0.4 < beta < 0.6), good (0.6 < beta < 0.8) and very good 

(beta > 0.8), which are termed C0, C1, C2, C3 and C4 

respectively. A terminal leaf exists at the end of each 

branch of the tree, where the probability of belonging to 

any of the five output groups can be inspected. Here, we 

summarized the basin characteristics into climatology and 

biases in forcing input, topography, human impacts, and 

hydrologic signatures (Table 1).  

Table 1. Basin characteristics used in the clustering 

analysis. 

Climatology 

/ Forcing 

biases 

Topography Human 

impact 

Hydrologic 

signatures 

Precipitation 

(mm/month) 

Area (km
2
) Degree of 

regulation 

(%) 

Mean annual 

specific 

runoff (Qm) 

Temperature 

(
o
C) 

Elevation 

(m) 

  Normalized 

high flow 

(q05) 

Snow depth 

(cm/month) 

Relief ratio  

(-) 

  Normalized 

low flow 

(q95) 

Actual 

evaporation 

(mm/month) 

Slope (%)   Normalized 

relatively low 

flow (q70) 

Potential 

evaporation 

(mm/month) 

    Slope of flow 

duration 

curve 

(mFDC) 

Dryness 

index (-) 

    Range of 

Parde 

coefficient 

(DPar) 

Evaporative 

index (-) 

    Coefficient of 

variation 

(CV) 

 Bias in 

precipitation 

(%) 

    Flashiness 

(Flash) 

 Bias in 

temperature 

(%) 

    Normalised 

peak 

distribution 

(PD) 

      Rising limb 

density 

(RLD) 

      Declining 

limb density 

(DLD) 

      Baseflow 

index (BFI) 

 

We then calculate the predictors’ importance (and rank 

them) by summing changes in the risk due to splits on 

every predictor and dividing the sum by the number of 

branch nodes. In order to avoid the high dimensionality in 
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the CART analysis, the hydrologic signatures were first 

clustered into 11 groups with each group receiving an ID 

(named FlowID) with the k-means clustering approach. 

3. Results 

3.1. Analysis of skill 

We first investigate the spatial variability in performance 

of the seasonal streamflow forecasts. Fig. 1 presents the 

variability of the beta metric across Europe, for the 

summer and winter seasons, and lead months 0 and 4. The 

quality of the forecasts in the first lead month, with regards 

to the beta criterion, is high over Europe with values 

mostly greater than 0.8. This indicates that the seasonal 

forecasting system, here composed of ECMWF System 4 

forecasts and E-HYPE trained with WFDEI data, 

reproduces well the water volumes for the month ahead. 

Patches of lower performance can be observed around the 

Caspian Sea, in Norway and in the Alps in winter, and in 

Turkey, in the Iberian Peninsula and in the northernmost 

parts of Europe in summer. As expected, the quality of the 

forecasts decreases with increasing lead time, especially in 

Central Europe and in the Mediterranean region. 

Nevertheless, forecast performance remains greater than 

0.8, indicating that water volumes can be generally well 

represented by System 4 even four months prior to the 

target month. Wider patches of lower performance can be 

observed than at one-month lead: in the Southern half of 

Europe and in Norway in winter, and in Scandinavia and 

Turkey in summer. 

3.2. Comparative analysis - Ranking of descriptors 

To spatially interpret hydrological skill and identify the 

key controls of poor/good model skill, we investigated 

potential relationships between predictive skill and 

physiographic-hydrological-climatic characteristics. First, 

the 15 descriptors were analyzed for inter-dependence, and 

omitted when these were highly inter-dependent to avoid 

potential artefacts in the CART regression analysis. 

Consequently a set of nine significant descriptors was 

statistically identified for application in the CART 

analysis, which further allowed us to estimate the 

descriptors’ importance. Figure 2 shows the ranking of 

nine descriptors (ranked by importance, with 1 being the 

most important descriptor) for all months and lead months. 

Results show that the dominant descriptors resulting in 

poor/good model performance are the FlowID, which 

describes the hydrological behavior of the basin, elevation 

and remaining bias in temperature (BiasTemp). It is 

generally expected that remaining biases in temperature 

will have an impact on the form of precipitation (rainfall or 

snowfall) during the cold months, and the processes (i.e. 

changing from (to) snow accumulation to (from) melting). 

For example, this occurs in northern Europe for April 

where the mean average temperature for April is close to 

0
o
C and hence small deviations in the meteorological 

forecasts will affect the basin response. CART indicated 

elevation (Elev.) to also be an important factor. This could 

 

Figure 1. Spatial variability of the beta performance for two seasons and lead months 0 and 4. 
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be due to the high reliability of the climate forecasts in 

predicting the climatological variability in highly elevated 

(usually snow dominated) basins in comparison to low 

elevated rain-fed basins. The basin hydrological behavior 

(FlowID) seems to be the most important descriptor with 

basins of similar river flow properties achieving similar 

skill. It is known that river systems experience processes 

with high memory in comparison to the natural phenomena 

occurring in the atmosphere. Hence it is expected that 

hydrological variables can have higher predictability than 

meteorological variables. However, this cannot be linearly 

translated since the precipitation-discharge process is also 

not linear, and therefore different systems are expected to 

respond differently to the meteorological signal.  

3.3. Comparative analysis – River basin response 

To get a better understanding of the basin characteristics 

that are characterized by a good/poor skill, Figure 3 shows 

the 11 spatially variable clusters, their distribution of flow 

signatures, and the distribution of skill in each cluster 

group. Similarity in catchment behavior for each class was 

interpreted and dominant flow generating processes could 

be distinguished. Results give a clear separation between 

basins with poor and good skill. Basins in cluster 5 achieve 

the highest skill. These basins are characterized by high 

ranges of baseflow (BFI), low monthly variability (DPar), 

and high values of low flows (q95 and q70). These 

properties describe basins where short-memory 

precipitation is aggregated and converted into long-

memory discharge. Clusters 6, 7 and 9 gather basins with 

similar behavior to that of cluster 5, yet these 

characteristics are less pronounced than in cluster 5. Basins 

in cluster 8 and 10 are short-memory rivers characterized 

by flashy response and high seasonal variability (DPar and 

CV). These basins are responding quite fast to the 

precipitation signal and with strong dynamics (RLD) 

whilst contribution from base flow is small (BFI). Basins 

that belong to clusters 1, 2 and 3 perform adequately and 

are generally characterized by the same flow signatures. 

These basins are mainly located in the Scandinavian region 

and in highly elevated regions of central Europe. They are 

characterized by medium to high slope in their flow 

distribution (mFDC), which is an indicator of a regime 

driven by snowmelt. 

4. Conclusion 

The evaluation spots the strengths and weaknesses of 

ensemble seasonal forecasts from ECMWF System 4 (15 

members), including trends of performance in various 

months and lead times. We identified links between 

forecasting skill and different physiographic and hydro-

climatic characteristics. 

1. The forecasting system shows good performance in 

reproducing water volumes in most of Europe (depending 

on the season); however skill deteriorates as a function of 

lead time, particularly in central Europe and in the 

Mediterranean region.  

2. CART shows that forecast quality is dependent on the 

basin’s hydrologic regime. Elevation and remaining bias in 

temperature were also identified as key characteristics to 

explain skill (hydrologic response in mountainous basins 

depends on temperature).  

3. Skill seems to be limited in relatively flashy basins 

experiencing strong flow dynamics over the year (less 

memory in the system). 

 

 

Figure 2. Importance ranking of key descriptors that influence the hydrological forecasting skill over Europe for all 

months and in lead month: (a) 0, and (b) 2. 

 

. 
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Figure 3. (a) Spatial distribution of hydrologically similar (clusters) basins over Europe, (b) distribution of flow signatures 

in each cluster group, and (c) distribution of beta skill in each cluster group. 
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